

FaceSpan

User’s Guide
Version 2.1

Digital
Technology
I N T E R N A T I O N A L ®

Copyright © 1996 Digital Technology International.

All rights reserved.

No part of this publication or the software described in it may be reproduced, stored in
a retrieval system, or transmitted, in any form, or by any means, mechanical,
electronic, photocopying, recording, or otherwise, without the prior written permission
of Digital Technology International.

Printed in the United States of America.

FaceSpan™ and the FaceSpan distinctive logo are trademarks of Digital Technology
International registered in the U.S.A. and used under license. All other trademarks
belong to their respective holders.

No licenses, express or implied, are granted with respect to any of the technology
described in this book. Digital Technology International retains all intellectual
property rights associated with the technology described in this book.

Digital Technology International
500 West 1200 South
Orem, UT 84058
801-226-2984
801-221-9254 Fax

Mention of third-party products is for information purposes only and constitutes
neither an endorsement nor a recommendation. Digital Technology International
assumes no responsibility with regard to the performance or use of these products.

Even though Digital Technology International has reviewed this manual, Digital
Technology International MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD “AS IS,”
AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS
QUALITY AND ACCURACY.

IN NO EVENT WILL DIGITAL TECHNOLOGY INTERNATIONAL BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility of such damages.

THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Digital Technology
International dealer, agent, or employee is authorized to make any modification,
extension, or addition to this warranty. Some states do no allow the exclusion or
limitation of implied warranties or liability for incident of consequential damages, so
the above limitation or exclusion may not apply to you.

FaceSpan was originally developed by Leonard Buck.

Notice to FaceSpan SRT and Demo Users:

This user guide is intended to meet the needs of all of our customers
whether they are trying out the demo, using the single run-time version of
FaceSpan or using the full version of FaceSpan. Consequently, the guide
contains certain references to features that are only available with the full
version of FaceSpan. For example, any reference to the ability and license
to distribute FaceSpan applications royalty-free and run them on any Mac
applies only to the full version of FaceSpan. You are not allowed to
distribute or use applications created with the FaceSpan demo or the single
run-time version of FaceSpan on any other Mac unless it has a licensed
copy of FaceSpan installed on it.

Please contact the FaceSpan Sales Department to inquire about purchasing
or upgrading to the full version of FaceSpan if you would like to distribute
your FaceSpan applications at:

Address:

 Digital Technology International

 500 West 1200 South

 Orem, Utah 84058

Phone:

 801-226-2984 (Main)

 800-322-3772 (U.S. Toll Free)

Fax:

 801-226-8438

E-mail:

 facespan@dtint.com

Table of Contents

Preface
About This Guide.. 3

Organization of the Guide.. 3
Overview of FaceSpan .. 8

About FaceSpan ... 8
FaceSpan and AppleScript .. 8
FaceSpan and Frontier .. 9
FaceSpan’s Development and Testing Environments..................... 9
What Can Be Done with FaceSpan... 10
What You Need to Know.. 11

How to Get More Information... 12
Tutorials ... 12
Feature Highlights .. 12
Example Applications ... 12
FaceSpan’s Built-in Reference Tools ... 12

New features in FaceSpan... 14
New features in FaceSpan Version 2.1.. 14
New features in FaceSpan version 2.0 .. 15

Part I:FaceSpan Usage Guide

Chapter 1: Overview of the Environment
Overview of the Environment.. 23
FaceSpan and its Associated Files ... 24

Projects .. 24
Applications ... 25
About the FaceSpan Extension.. 26

FaceSpan’s Interface objects.. 27
Menus .. 27
Windows.. 27
Artwork .. 28
Form resources ... 28
Scripts .. 28
v

Basic Development Tasks.. 30
Managing projects .. 30
Editing menus... 30
Editing windows ... 30
Scripting ... 31
Testing.. 31

Chapter 2: Project Management
Project Management ... 35

The Project Window... 36
Project icon .. 37
Project Script controls... 37
Project Window listbox and View radio buttons 38
Project Window Buttons... 43

Instructions ... 45
Using File menu and Edit menu commands................................ 45
Creating a new project ... 45
Making a default project... 45
Opening an existing project or editable application.................... 46
Saving a project.. 46
Editing a project's script.. 50
Running a project ... 50
Finding an existing project resource ... 50
Creating a new window or menu template 52
Importing artwork: pictures, icons, color patterns, and cursors ... 53
Importing form definition resources and scripting additions:....... 54
Viewing documentation of form resource 57
Creating a new storage item ... 58
Tips: On-screen position of the Project Window......................... 59

Chapter 3: The Window Editor
The Window Editor ... 63
The Window Template ... 65
The Tool Palette .. 66
Drag and Drop support in the Window Editor 71
vi

The Property Bar ... 72
General Controls .. 72
Text Property controls... 75
Position, Width, and Height Property controls 77

Object Information dialogs.. 79
Instructions ... 80

Using File menu commands ... 80
Creating a new window template ... 80
Making a default window template... 80
Opening an existing window template 80
Saving a window template.. 80
Reverting to the last saved version of a window template 81
Selecting the window itself ... 81
Creating a new window item in the window template 81
Creating a new window item in the window template
using Drag and Drop .. 82
Selecting a window item using the mouse 82
Selecting multiple items.. 82
Selecting a window item using the Property Bar 82
Selecting multiple window items .. 83
Deselecting the selected window items 83
Cutting a window item ... 83
Copying a window item ... 83
Pasting a window item ... 84
Duplicating a window item .. 84
Cloning a window item .. 84
Deleting a window item ... 84
Setting a window item's properties using the Property Bar 85
Opening a window item’s Object Information............................ 85
Entering text into a window item .. 85
Testing window items and their scripts 85
Returning the Window Editor to its default position 86

Tips for Designing Windows ... 87

Chapter 4: The Menu Editor
The Menu Editor ... 91
The Menu Template .. 92
Menu sequence .. 94
vii

Instructions ... 95
Creating a new menu template ... 95
Opening an editor for an existing menu template 95
Selecting a menu item .. 95
Inserting a new menu item between existing menu items 95
Inserting a new menu item at the top of a menu 95
Moving a menu item to a different position 96
Creating a divider bar to separate two groups of menu items 96
Deleting an existing menu item .. 96
Copying a menu item ... 96
Pasting a menu item ... 96
Moving the insertion mark within the Menu Editor 97
Associating a menu template with a window.............................. 97

Tips for Naming Menus... 98

Chapter 5: The Storage Item Editor
Understanding the Storage Item Editor .. 103

The Storage Item Editor... 103
Storage Item Name textbox... 104
Check Syntax button... 104
Storage Item Value textbox ... 104

Instructions ... 105
Creating a new storage item ... 105
Opening the editor of an existing storage item.......................... 105
Cutting a Storage item .. 105
Copying a storage item ... 105
Pasting a storage item ... 105
Duplicating a storage item.. 106
Deleting an existing storage item .. 106

Chapter 6: The Script Editor
Understanding the Script Editor... 109

The Script Editor ... 109
Script textbox controls .. 110
Window Items popup ... 111
Check Syntax button... 112
Script textbox ... 112
Scripting Language popup .. 113
viii

“Drag and Drop” support in the Script Editor............................ 113
Instructions ... 114

Using Edit menu commands ... 114
Opening a script editor for the project script............................. 114
Opening a script editor for a window template or window item114
Checking for errors ... 114
Scripting a message handler ... 115
Adding a property reference to a handler.................................. 115
Adding an object reference to a handler 115
Recording a script... 116
AppleScript Formatting ... 116
To customize the text formatting of all AppleScript scripts: 117

Chapter 7: Other Scripting Tools
Other Scripting Tools .. 121
Message Windoid ... 122

Interactive Debugging .. 122
Message Windoid controls ... 123
Message Log View.. 124
Event Log View... 125
Drag and Drop support in the Message Windoid 126

Instructions for Using the Message Windoid 127
Displaying the Message Windoid ... 127
Sending a message from the uppermost textbox
of the Message Windoid ... 127
Sending a message from the lower textbox
of the Message Windoid ... 127
Getting the value of a property of a window item 127
Setting the value of a property of a window item 128

Understanding the Dictionary Windoid .. 130
Applications popup .. 130
Objects and Events popups... 131
Drag and Drop support in the Dictionary Windoid................... 132

Instructions for Using the Dictionary Windoid 133
Opening FaceSpan’s dictionary .. 133
Opening a different scriptable application’s dictionary 133
Adding an item to the Applications popup................................ 133
Removing an item from the Applications popup 133
ix

Chapter 8: The Testing Environment
The Testing Environment... 137

The Message Windoid and Testing ... 137
Play Mode .. 138
Run Mode... 140

Project Script Errors during Runtime ... 141
Window and Window Item Script Errors during Runtime.......... 141

Part II: The Structure of Applications

Chapter 9: The Structure of Applications
Understanding the Structure of Applications 147
Application Components .. 148

Interface Objects .. 148
Properties ... 148
Handlers... 148
Scripts .. 149
Application Object ... 150

Application Structure .. 151
Logical Structure... 151
Physical Structure ... 151

Chapter 10: Scripting Your Application
Scripting Your Application .. 155
Messages and Handlers... 156

Partial References ... 157
Finding An Object’s Container ... 158
Sending Messages to Other Objects.. 158
Containers Intercept Messages.. 159
Unhandled Messages.. 159
Continuing Messages.. 159
Necessary Continuations .. 160
Handling Intercepted Messages .. 160
Custom Messages with Positional Parameters 161
Messages with Labeled Parameters ... 162
Properties and the “my” Reference ... 162
Global Variables... 163
x

Controlling Windows.. 164
Opening Windows ... 164
Setting Properties in an open window Statement 164
Retrieving Properties from a Modal Dialog 165
An Alternative Method for Retrieving Properties 166
Setting and Retrieving Properties in One Statement 167
Preserving and Restoring the Changes of a Window 167
Saving a User-Edited Window .. 168

Controlling Menus .. 169
Application and Private Menus... 169
Handling Chosen Messages .. 169

Controlling Other Applications ... 171
Scriptable Applications... 171
Terminology ... 171
Scripting Support .. 172
Keeping Ideas in Order... 172
Scripting Target Applications .. 173
Scripting Other FaceSpan Applications..................................... 178
Scripting FaceSpan Itself ... 178

Using Scripting Additions.. 180
AppleScript Language Extensions.. 180
Writing Scripting Additions... 180
Using Scripting Additions in Applications................................. 180

An Approach to Application Development 182
Incremental Development .. 182
Interface First.. 182
Scripting and Code Structure .. 183
Refinement ... 183

Part III: FaceSpan Object and Language Reference

Chapter 11: Applications
Applications.. 189

Reference Forms... 189
Application Properties... 190
Application Command and Event Messages 201
xi

Chapter 12: Windows
Windows .. 211
Properties of windows... 213
Window Command and Event Messages... 237
Special Considerations .. 252

Scripts to Edit Windows.. 252
Every, Whose and Where ... 252
Restrictions on the Quit Command... 253
Opening Several Copies of a Window 253

Chapter 13: Window Items
Window Items... 257

Reference Forms... 257
Common Properties .. 259

Window Item Command and Event Messages 275
Forms and Filters... 285

Forms and Key Filters ... 285
Formats .. 285
Form and Format Documentation... 286
Key Filters... 286
Examples and Sources of Forms.. 286
Some Technical Notes.. 287

Boxes .. 288
Properties of Boxes ... 288
Box Command and Event Messages.. 293
Scrolling Panes ... 294

Checkboxes .. 295
Properties of Checkboxes ... 295
Checkbox Command and Event Messages 297

Gauges.. 299
Properties of Gauges... 299
Gauge Command and Event Messages 303

Graphic Lines.. 305
Properties of Graphic Lines... 305
Graphic Line Command and Event Messages 306

Icons ... 307
Properties of Icons .. 307
Icon Command and Event Messages... 311
xii

Labels ... 312
Properties of Labels .. 312
Label Command and Event Messages 313

Listboxes ... 314
Properties of Listboxes .. 314
Listbox Command and Event Messages..................................... 321

Listbox items... 325
Properties of Listbox Items .. 325

Movies .. 327
Properties of Movies ... 327
Movie Command and Event Messages...................................... 332

Pictboxes .. 337
Properties of Pictboxes ... 337
Pictbox Command and Event Messages 345

Popups (Pop-up Menus) .. 347
Properties of Popups... 347
popup item or menu item properties... 349
Popup Command and Event Messages...................................... 350

Push Buttons ... 352
Properties of Push Buttons .. 352
Push Button Command and Event Messages 356

Radio Buttons ... 358
Properties of Radio Buttons... 358
Radio Button Command and Event Messages 360

Tables ... 362
Reference Forms... 362
Properties of Tables .. 363
Table Command and Event Messages 375

Rows of Tables.. 379
Reference Forms... 379
Properties of Rows.. 379

Columns ... 384
Reference Forms... 384
Properties of Columns .. 384

Cells ... 389
Reference Forms... 389
Properties of Cells... 389

Textboxes ... 398
Textbox Command and Event Messages 408

Text Suite .. 416
Reference Forms... 416

Characters... 418
Properties of Characters.. 418

Lines, Paragraphs, Words .. 421
Properties of Lines .. 421
Paragraphs.. 421
Words .. 421

Chapter 14: Menus and Menu Items
Menus and Menu Items... 425

Menus .. 425
Properties of Menus .. 426
Menu Items... 429

Properties of Menu Items .. 429
Menu Command and Event Messages....................................... 433

Chapter 15: Special Artwork and Text Style Classes
Resource Info .. 437

Properties of Resource Info ... 437
Text Style Info ... 440

Properties of Text Style Info .. 440

Chapter 16: Storage Items
Storage.. 445

Reference Forms... 445
Properties of Storage items .. 446

Special Considerations ... 448

Appendix
Appendix A:FaceSpan Menu Reference .. 451

Apple menu.. 451
File menu ... 451
Edit menu ... 453
Window menu ... 453
Script menu .. 455
Object menu .. 456
Font menu .. 459
xiv

Style menu ... 459
Appendix B:Commands and Shortcuts .. 461

Keyboard commands.. 461
Keyboard equivalents for menu commands 462
Mouse Shortcuts ... 464

Appendix C:Sizes and Limits ... 466
Sizes and counts:.. 466
Larger than effective sizes:.. 466

Appendix D:Scripting Resources ... 467
Books About AppleScript.. 467
Other Helpful References ... 469
Other Scripting Tools.. 470
AppleScript Support on-line.. 471

Appendix E:Reserved Words List ... 473
Appendix F:How to Write Forms... 475
Appendix G:Speed Enhancement Tips .. 476

Index
Index .. 479
xv

xvi

Preface
About This Guide 3

Overview of FaceSpan 8

How to Get More Information 12

New features in FaceSpan 14

 Preface

About This Guide

About This Guide

The FaceSpan User Guide is a complete guide to the FaceSpan application
package. FaceSpan™ the Interface Designer & Application Builder, is a
visual interface design and scripting tool that helps you create professional-
looking Macintosh applications.

You should read this section if you want to know:

➤ how this guide is organized

➤ what each chapter includes

➤ how to interpret words that have special formatting, including scripts

➤ what references were used in writing this guide

Organization of the Guide
The FaceSpan User Guide describes how to use FaceSpan, defines its
terminology, and provides a reference for the properties of FaceSpan objects
and the values those properties can have.

This guide is intended for experienced Macintosh users who know how a
Macintosh application should look and behave, and who may have some
previous experience in scripting applications.

The guide contains an introduction and three main parts.

➤ Part I: “FaceSpan Usage Guide” describes how to use FaceSpan’s
development and testing environments.

➤ Part II: “Application Development” discusses the structure of applications,
how to use scripts to control your application, how to use scripting additions,
and how to script other applications—including the Scriptable Finder.

➤ Part III: “FaceSpan Object and Language Reference” tells about each of the
FaceSpan object classes, their properties and values, and the commands used
to control them.

The guide’s appendices include a menu reference, a reference for commands
and shortcuts, information about sizes and limits, information on scripting
resources, a reserved word list, and where to find more information about
how to write forms.

This guide also includes an index.
3

4

 Preface

About This Guide

Introducing FaceSpan
The introduction contains three sections:

➤ “Overview of FaceSpan” gives a brief overview of FaceSpan, its
interrelationship with AppleScript, its development and testing
environments, and some suggested ways you can use FaceSpan.

➤ “How to Get More Information” tells you where to find demonstration
projects and sample applications that are included with FaceSpan, and
describes FaceSpan’s on-line reference tools.

➤ “New Features in Version 2.1” lists many of the new features added since
version 1.0, and tells you where to find additional information about them.

Part I: FaceSpan Usage Guide
Part I contains eight chapters:

Chapter 1

“Overview of the Environment,” describes FaceSpan and its associated files,
its interface objects, and basic development tasks.

Chapter 2

“Project Management,” describes FaceSpan’s Project Window and gives you
instructions for using it to manage your project’s resources.

Chapter 3

“The Window Editor,” describes the tools used to create a user interface, and
gives instructions about how to use them.

Chapter 4

“The Menu Editor,” describes the environment used to create and edit run-
time menus, and gives instructions about how to create menus.

Chapter 5

“The Storage Item Editor,” defines storage items and gives instructions for
making and using them in projects.

Chapter 6

“The Script Editor,” describes how to use FaceSpan’s scripting environment
to create, edit, and compile scripts.

 Preface

About This Guide

Chapter 7

“Other Scripting Tools” describes how to use the Message Windoid and the
Dictionary Windoid.

Chapter 8

“The Testing Environment,” defines various testing modes and tells how to
use them.

Part II: Application Development
Part II contains two chapters:

Chapter 9

“The Structure of Applications,” describes the components and hierarchy of
applications and how FaceSpan works.

Chapter 10

“Scripting Your Application,” discusses the structure of scripts, how to use
them to build applications, and how to use them to control other applications.
It also suggests a step-by-step process for application development.

Part III: FaceSpan Object and Language Reference
Part III contains six chapters:

Chapter 11

“Applications,” describes the properties of the application object as well as
the commands and messages understood by applications.

Chapter 12

“Windows,” defines the properties of windows as well as the commands and
messages understood by windows.

Chapter 13

“Window Items,” describes the properties common to all window items, and
the commands understood by all window items. It also provides information
about including form definition resources and key filters in your application.
Each window item—push buttons, radio buttons, checkboxes, labels,
textboxes, pictures, icons, movies, popups, listboxes, boxes, graphic lines,
gauges and tables—is defined by its properties and the commands it
understands.
5

6

 Preface

About This Guide

Chapter 14

“Menus and Menu Items,” describes the properties of menus and menu items.

Chapter 15

“Special Artwork and Text Style Classes,” describes the properties of the
Resource Info and Text Style Info classes.

Chapter 16

“Storage Objects,” describes the properties of storage objects.

Appendices
This guide contains six appendices:

Appendix A

“FaceSpan Menu Reference,” explains the commands available from
FaceSpan’s menus.

Appendix B

“Commands and Shortcuts,” lists the keyboard commands, keyboard
equivalents to FaceSpan’s menu commands, and the mouse shortcuts
supported by FaceSpan.

Appendix C

“Sizes and Limits,” tells about the maximum sizes or counts you may expect
while using FaceSpan.

Appendix D

“Scripting Resources,” lists reference materials and on-line services that can
help you learn more about FaceSpan and AppleScript.

Appendix E

“Reserved Word List,” gives a list of words that are used for objects, classes,
properties, messages, and values by FaceSpan.

Appendix F

“How to Write Forms,” tells you where to find additional information about
writing forms.

Appendix G

“Speed Enhancement Tips,” gives you tips on how to make FaceSpan run
faster.

 Preface

About This Guide

Language Conventions
There are instances where words in this guide use a particular text style to set
them apart as having special meaning.

➤In examples of script syntax, those items that are to be replaced by the
scripter are italicized. For example:

➤ Optional parameters are enclosed in square brackets to distinguish
them from required parameters. For example:

“The parameters of the keystroke message include [key], [option down],
[command down], …”

➤ Words defined by FaceSpan appear in a special font. For example:

“...You can remove any of the control boxes by adjusting the window
template’s closeable, resizable, and titled properties.”

or

“...The project script is not run, so open window commands are not
executed.”

References
AppleScript Language Guide English Dialect. Cupertino: Apple Computer,
Inc., 1993.

AppleScript Scripting Additions Guide English Dialect. Cupertino: Apple
Computer, Inc., 1994.

Macintosh Human Interface Guidelines. Cupertino: Apple Computer, Inc.,
1993.

tell window item itemName to draw
where itemName is to be replaced by an actual name.
7

8

 Preface

Overview of FaceSpan
Overview of FaceSpan

You should read this chapter if you want to know:

➤ how FaceSpan and AppleScript are interrelated

➤ what you can do with FaceSpan

➤ what you need to know in order to use FaceSpan

About FaceSpan
FaceSpan is an application package that allows you to create sophisticated
graphic user interfaces for AppleScript applications. It includes editors for
scripting your application, constructing and scripting windows and menus, as
well as a management environment through which you can inspect, edit,
duplicate, and delete each application’s interface components and resources.

You can script essential elements of FaceSpan itself in order to automate
some reporting or to perform wholesale editing of windows and window
items. New properties return lists of all resources within a project, and the
open and print commands accept these resources. For example, the
window resources command returns a list of items of type resource info; each
item refers to a window in the project. Any of these items may then be used
in an open or print command.

FaceSpan and AppleScript
Used alone, most scripting languages can provide only simple dialogs for
communication with the user. But using FaceSpan and AppleScript—or any
Open Scripting Architecture (“OSA”) scripting language—you can create
and control windows, dialog boxes, windoids, and menus that give your
application the look and functionality of professionally-engineered
Macintosh software.

FaceSpan’s objects automatically behave in accordance with Macintosh
Human Interface Guidelines, and you can change their properties to extend or
modify functionality. FaceSpan provides even greater functionality by
allowing you add form definition resources to projects, then use them to
control window items. Using forms, you can customize the behavior and
appearance of almost every window item.

 Preface

Overview of FaceSpan
Completed FaceSpan projects can be saved as applications, and run on any
Macintosh computer where AppleScript (version 1.1 or later) has been
installed. Using FaceSpan, you can communicate with and control the Finder,
“borrow” capabilities from other AppleEvents-aware applications, and
integrate those functions to perform specialized tasks. The applications you
create with FaceSpan can be as flexible and powerful as you want them to be.

FaceSpan and Frontier
Enhanced Frontier support is now available in FaceSpan! Here are some of
the changes:

➤ UserTalk can be executed right from the Message Window, as well as from
any object’s script.

➤ The Script Editor popups support UserTalk.

➤ The titles of the Script Editor’s windows reflect the selected language.

➤ Newly created scripts default to the same language as the project script; you
don’t have to keep choosing UserTalk for each new script.

➤ You can now record UserTalk scripts.

➤ Errors are now properly reported, and their locations are hilited.

FaceSpan’s Development and Testing
Environments

A completed FaceSpan project is made up of windows, menus, scripts,
artwork, and other resources, all of which function as a unified application.
Using FaceSpan’s Window Editor and Project Window, you can test-run your
project’s scripts—as well as test the way objects will respond to user input—
while the project is still under development.

FaceSpan’s Project Window is the command center from which you can
manage all your project’s component resources, as well as test-run the project
script. The project script—the main script for the application you are
building—is a project’s central control, and can coordinate a variety of run-
time functions including menus and windows.

Menus are created using FaceSpan’s Menu Editor. Inside the Menu Editor,
you can create, design, and edit menu templates. Once the template is created,
FaceSpan then saves a description of it, and uses that description to create the
actual menu at runtime. The menus added to the application’s menu bar at
runtime can include menus associated with a particular window, or with the
project itself.
9

10

 Preface

Overview of FaceSpan
Windows are created in much the same way as menus. FaceSpan’s Window
Editor lets you to design, create, and edit window templates. Once window
items—such as push buttons, radio buttons, icons, tables, QuickTime movies,
and more—are added to the window template, you can use the Window
Editor to change the state of the window template from Edit Mode to Play
Mode. Play Mode allows you to interact with a window and its window
items—interaction very similar to that of an application user during runtime.

FaceSpan’s Message Windoid is a powerful tool in both the development and
testing environment. You can open the Message Windoid during Edit or Play
Mode to get and set properties, as well as to write and run scripts that send
test messages to window items. During runtime, you can use the Message
Windoid to track Apple Events.

What Can Be Done with FaceSpan
The projects you make with FaceSpan can be as simple or as powerful as you
can imagine. Listed below are a few of the many ways in which it can be used.

Create friendly interfaces
Use FaceSpan to put user-friendly interfaces on otherwise faceless scripts, or
to make simplified “command centers” for complicated scriptable
applications.

Make standalone applications
FaceSpan has a friendly, object-oriented language, and framework which you
can combine with any OSA compatible scripting language to make a
complete environment for designing and developing real applications.

Create quick prototypes
Any kind of application can be prototyped with FaceSpan, and at any level of
detail, from simple presentations of windows to fully functional applications.

Develop integrated software
You can create FaceSpan applications that pull together the services of other
scriptable applications, including other FaceSpan applications, and the
Scriptable Finder, too.

 Preface

Overview of FaceSpan
Develop scriptable applications
Every application developed with FaceSpan is itself scriptable—even to the
point of creating new windows, window items, and scripts at run time.

Make tools for FaceSpan
Because FaceSpan is itself a scriptable application, you can use FaceSpan to
develop “palette” applications that help you work with FaceSpan: augment
the editing environment with custom tools and shortcuts.

Learn to program
With FaceSpan’s supportive and satisfying environment, you can learn all
about programming, including object-oriented programming.

What You Need to Know
This guide is intended for experienced Macintosh users. It assumes that you
have at least an informal grasp of Macintosh standards for human interface
and application design—that is, that you know how a Macintosh application
should look and feel. Previous experience writing scripts is preferred, but not
required.
11

12

 Preface

How to Get More Information
How to Get More Information

You should read this chapter if you want to know:

➤ where to find the FaceSpan tutorials, demonstration projects, and sample
applications

➤ what on-line reference tools FaceSpan includes

Tutorials
FaceSpan comes with tutorial projects, designed to introduce you to
application development using FaceSpan. The FaceSpan: Getting Started
guide, included with your software package, contains instructions for making
the tutorial projects. You will find completed versions of these projects in the
“Tutorials” folder on the FaceSpan disks.

Feature Highlights
The FaceSpan disks include many simple projects designed to illustrate
FaceSpan’s features, demonstrate coding techniques, and show typical uses
of the product. You will find them in the “Feature Highlights” folder. You can
find brief descriptions of many of these feature highlights in Chapter 6 of the
FaceSpan: Getting Started guide, included with your software package.

The best way to learn from these projects is to open each one in FaceSpan,
run each project script, view the project’s run-time behavior, then look at the
scripts and properties used to create the project.

Example Applications
Example Applications are real applications, created with FaceSpan, that
illustrate some of the many kinds you can make. They are located in the
“Example Applications” folder on the FaceSpan disks. Chapter 5 of the
FaceSpan: Getting Started guide, gives a brief description of many of these
applications.

FaceSpan’s Built-in Reference Tools
FaceSpan’s Script Editor has popups (pop-up menus) you can use to
automatically insert references to windows, objects, properties, and messages
into scripts.

 Preface

How to Get More Information
FaceSpan’s Dictionary Windoid allows you to locate a scriptable application
or scripting addition, then open its dictionary (aete resource) to inspect
definitions of that application’s objects, commands, or other words it
understands.

For more information about the Script Editor, see Chapter 6. The Dictionary
Windoid is discussed in Chapter 7: “Other Scripting Tools.”
13

14

 Preface

New features in FaceSpan
New features in FaceSpan

New features in FaceSpan Version 2.1
➤ When saving miniature and complete applications, you now can choose
whether to include the dictionary. See Saving a project as an editable
application on page 47.

➤ When saving as run-only, you can now choose to extract the visible textual
properties of items (e.g. title, contents) in the windows into TEXT and STR
resources. See Saving a project as a non-editable, run-only application on
page 48.

➤ A window now has a title property distinct from its name property. See
name on page 226 and title on page 233.

➤ A pictbox now has a scale property, which controls the magnification or
reduction of the image in the pictbox. See scale on page 340.

➤ A pictbox now has a justification property. See justification on
page 339.

➤ An application now has a ticks property, which returns the number of
ticks (60ths of a second) since the machine was turned on. This can be helpful
in implementing timed behaviors. See ticks on page 199.

➤ An application now has heap space and stack space properties.
These report the amount of free memory available to the application. They
help you better monitor and respond to low-memory situations. See heap
space on page 193 and stack space on page 198.

➤ Enhanced Frontier support is now available in FaceSpan! See FaceSpan
and Frontier on page 9.

➤ Two new commands let your scripts mimic the actions of a real user within
other applications. Using these commands, you can automate the operations
of applications that have no built-in support for scripting. See click as user on
page 201 and type as user on page 207.

➤ While FaceSpan itself has been “fat” since version 2.0, miniature and
complete applications can now take advantage of the increased performance
of native code with a “fat” version of the FaceSpan Extension.

 Preface

New features in FaceSpan
➤ Windows can now be printed under script control. The printing of multiple
pages with sophisticated layouts is now supported. A print setup command
provides control over paper margins and printing dialogs. See print / print
setup on page 205.

➤ You can script essential elements of FaceSpan itself, to automate some
reporting or to perform wholesale editing of windows and window items.
New properties return lists of all resources within a project, and the open and
print commands accept these resources. For example, the window
resources command returns a list of items of type resource info; each item
refers to a window in the project. See About FaceSpan on page 8.

➤ You can now play and record sounds as either “snd” resources or as “AIFF”
files. You can even make the computer speak with Text-To-Speech. You can
also import sounds into your project and play them back. See sound on
page 250 and text to speech on page 232.

New features in FaceSpan version 2.0
Enhanced Interface Development Environment
➤ Support for Drag and Drop in editing

See Part I, Chapter 3: “The Window Editor,” and Part I, Chapter 6: “The
Script Editor.”

➤ Control over each window item’s resizing in response to window resizing

 See Part III, Chapter 13: “Window Items,” Properties Common to all
Window Items.

➤ User-configured default windows and projects

See Part I, Chapter 2: “Project Management,” and Chapter 3: “The
Window Editor.”

➤ A format property for configuring popups, listboxes, textboxes, buttons,
and tables

See Part III, Chapter 13: “Window Items.”

➤ Text alignment for labels and titled boxes

See Part III, Chapter 13: “Window Items,” Properties of Boxes,
Properties of Labels.

➤ Direct import of forms, key filters, and scripting additions from other files
15

16

 Preface

New features in FaceSpan
See Part I, Chapter 2: “Project Management” and Part II, Chapter 10:
“Scripting Your Application,” Using Scripting Additions.

➤ Direct import of cursors and pixel patterns

See Part I, Chapter 2: “Project Management” and Part III, Chapter 11:
“Applications,” as well as Chapter 13: “Window Items,” Properties of
Boxes.

➤ On-line form definition resource documentation

See Part I, Chapter 2: “Project Management” and Part III, Chapter 13:
“Window Items,” Form Definition Resources and Key Filters.

Enhanced Scripting and Testing
➤ OSA support

See Part I, Chapter 6: “The Script Editor.”

➤ Event logging

See Part I, Chapter 8: “The Testing Environment.”

➤ A storage object that can contain any value, including script objects

See Part I, Chapter 5: “The Storage Item Editor” and Part III, Chapter 16:
“Storage Items.”

➤ Script-controlled Show Balloon event for objects

See Part III, Chapter 13: “Window Items,” Commands and Event
Messages

➤ Eleven new application properties, including a clipboard property

See Part III, Chapter 11: “Applications,” Properties of Applications.

➤ AppleScript formatting

See Part I, Chapter 6: “The Script Editor.”

➤ On-line dictionary reference

See Part I, Chapter 7: “Other Scripting Tools.”

➤ Global persistent variables accessible by all scripts

See Part II: “Application Development” and Part III, Chapter 16:
“Storage.”

➤ “Do Script” event support

See Part III, Chapter 11: “Applications” and Chapter 12: “Windows.”

 Preface

New features in FaceSpan
➤ A Script menu with additional editing commands

See Appendix A: “FaceSpan Menu Reference.”

➤ Full Find and Replace support in the Script Editor

See Part I, Chapter 6: “The Script Editor” and Appendix A: “FaceSpan
Menu Reference.”

➤ A Script Editor popup that displays handlers for pre-defined messages and
user-defined handlers, and can find or navigate to them

See Part I, Chapter 6: “The Script Editor.”

➤ Script-initiated idle event

See Part III, Chapter 11: “Applications” and Chapter 12: “Windows.”

Enhanced Functionality for Your Applications
➤ A table object

See Part III, Chapter 13: “Window Items,” Properties of Tables.

➤ Support for Drag and Drop at runtime

See Part III, Chapter 13: “Window Items.”

➤ Enhanced key filters for textboxes including DisplayDates, DisplayAlphas,
DisplayNumbers, DisplayBooleans, DisplayChoices

See Part III, Chapter 13: “Window Items,” Properties of Textboxes.

➤ Direct embedding of scripting additions (OSAXs) into projects

See Part I, Chapter 2: “Project Management,” and Part II, Chapter 10:
“Scripting Your Application.”

➤ Text Suite support for textboxes

See Part III, Chapter 13: “Window Items,” Properties of Textboxes.

➤ Color patterns for filling boxes

See Part III, Chapter 13: “Window Items,” Properties of Boxes.

➤ Animated buttons

See Part III, Chapter 13: “Window Items,” Properties of Push Buttons,
Properties of Pictboxes.
17

18

 Preface

New features in FaceSpan

Part I:
FaceSpan Usage Guide

Chapter 1
Overview of the Environment

Chapter 2
Project Management

Chapter 3
The Window Editor

Chapter 4
The Menu Editor

Chapter 5
The Storage Item Editor

Chapter 6
The Script Editor

Chapter 7
Other Scripting Tools

Chapter 8
The Testing Environment

Chapter 1:

Overview of the Environment
Contents:

Overview of the Environment 23

FaceSpan and its Associated Files 24

FaceSpan’s Interface objects 27

Basic Development Tasks 30

Chapter 1: Overview of the Environment

Overview of the Environment
Overview of the Environment

You should read this chapter if you want to know:

➤ what types of files FaceSpan can create

➤ what interface objects FaceSpan can create or support

➤ what basic tasks are required to develop an application using FaceSpan
23

24

Chapter 1: Overview of the Environment

FaceSpan and its Associated Files
FaceSpan and its Associated Files

Using FaceSpan you can create Project documents, Complete Applications,
and Miniature Applications; each has its own desktop icon.

Projects

Projects are editable documents created with FaceSpan. A completed
FaceSpan project is made up of windows, menus, scripts, artwork, form
definition resources, and other resources, all of which can function as a
unified application.

You can make an application from a project by saving the project as an
application. Any FaceSpan application can be saved in a non-editable run-
only form (which you may prefer for distribution copies), or in an editable
form that can be opened by FaceSpan for additional modification and testing.
(The ability and license to distribute FaceSpan applications royalty-free and
run them on any Mac applies only to the full version of FaceSpan. You are
not allowed to distribute or use applications created with the FaceSpan demo
or the single run-time version of FaceSpan on any other Mac unless it has a
licensed copy of FaceSpan installed on it.)

FaceSpan
application
desktop icon

Project
document
icon

Chapter 1: Overview of the Environment

FaceSpan and its Associated Files
Applications

FaceSpan creates two types of applications, Complete Applications and
Miniature Applications. Both Complete and Miniature Applications can be
made “droppable.” A droppable application’s scripts run when another
document’s desktop icon is dropped onto the application’s desktop icon. You
can make a FaceSpan application “droppable” by including a handler for the
Open command in its project script. Droppable FaceSpan applications are
distinguished from others by their icons, which have a downward arrow.

Complete Applications
A project that is saved as a Complete Application can run on any Macintosh
computer on which AppleScript 1.1 or later has been installed. All Complete
Applications contain a copy of the FaceSpan Extension. (The ability and
license to distribute FaceSpan applications royalty-free and run them on any
Mac applies only to the full version of FaceSpan. You are not allowed to
distribute or use applications created with the FaceSpan demo or the single
run-time version of FaceSpan on any other Mac unless it has a licensed copy
of FaceSpan installed on it.)

Miniature Applications
A project that is saved as a Miniature Application requires that the FaceSpan
Extension, as well as AppleScript (version 1.1 or later), have been installed
on the Macintosh computer where it is to be run. Miniature Applications can
have all the functionality of Complete Applications; they are called
“Miniature” only because the applications themselves require less disk space.

Application icon “Droppable”
Application icon
25

26

Chapter 1: Overview of the Environment

FaceSpan and its Associated Files
About the FaceSpan Extension

When you purchase FaceSpan, your license agreement allows you to
distribute the FaceSpan Extension, along with your applications, royalty-free.
(The ability and license to distribute FaceSpan applications royalty-free and
run them on any Mac applies only to the full version of FaceSpan. You are
not allowed to distribute or use applications created with the FaceSpan demo
or the single run-time version of FaceSpan on any other Mac unless it has a
licensed copy of FaceSpan installed on it.) The FaceSpan Extension is a
System Extension file that acts as a run-time assistant for projects saved as
Miniature Applications. The FaceSpan Extension file must be in the
Extensions folder (within the System Folder) of any Macintosh computer on
which Miniature Applications are to be run. Be certain to include a copy of
the FaceSpan Extension (along with installation instructions) when
distributing Miniature Applications to users who do not own a copy of
FaceSpan.

While FaceSpan itself has been “fat” since version 2.0, miniature and
complete applications can now take advantage of the increased performance
of native code with a “fat” version of the Facespan Extension.

FaceSpan Extension icon

Chapter 1: Overview of the Environment

FaceSpan’s Interface objects
FaceSpan’s Interface objects

A project’s user interface is made up of menus, document windows, modal
dialogs, and windoids that you create using FaceSpan’s editors, and control
through scripts.

Menus
The customized menus you create using FaceSpan’s Menu Editor give your
applications complete control of the menu bar at runtime. After menus are
constructed, you can easily “attach” them to a project, or to any of its
windows. At runtime, menus then display when their project or window is
active.

Windows
Using FaceSpan, you can create window templates belonging to three classes
of windows: document windows, modal dialogs, and floating windoids; all
controlled through scripts. Although a project’s windows perform as a
coordinated user interface when the application is running, you create and
edit each window individually as a template, or model of the run-time
window.

Each time you create a new window template or open an existing template,
FaceSpan opens a Window Editor for it. Using the Window Editor, you can
add window items and arrange them within the template, adjust the properties
of the window and its window items (to define their forms and functions), and
write scripts to control their behavior.

Window items
Windows contain smaller parts generically called window items. Window
items include familiar Macintosh interface objects such as push buttons, radio
buttons, checkboxes, icons, pictures, movies, listboxes, popups (pop-up
menus), tables, and more. They all belong to the class, window item, because
they share common characteristics—such as properties and commands—that
they all understand. In turn, each of these objects is its own object class, with
a distinct appearance, an automatic response to user input, and properties
through which its appearance and function can be modified.
27

28

Chapter 1: Overview of the Environment

FaceSpan’s Interface objects
Window Item Properties, Commands, and
Messages
Every window item has properties. Each property has a name and a value. For
example, a property named visible, when set to the value true or
false, determines whether or not that object can be seen in its window. The
visible property (and many others) are common to all window items, but
some properties apply only to specific object classes of window items.

At runtime, window items receive messages which are generated
automatically in FaceSpan when the user interacts with its interface objects.
Message handlers can be added to the scripts of projects, windows, and
window items to intercept and respond to these messages.

Artwork
You can add your own artwork to projects. The window item classes
picture and icon act as containers for the display and manipulation of
artwork. In addition to pictures (PICT) and icons (ICON, cicn, and ICN#),
you can customize the look of your project by using “color patterns” (ppat),
as well as black and white cursors (CURS), which are treated as artwork.
FaceSpan allows you to import, copy, paste, delete, and rename these
resources.

Form resources
The default standard form definition resource, or form, used by each window
item is built into FaceSpan. The standard listbox form, for example, lets a
listbox display only text. In addition to providing default standard forms for
its objects, FaceSpan lets you add form definition resources to a project, then
use them to control window items. For example, you might add a listbox form
that allows the listbox to display icons in addition to text. The FaceSpan
Additions project (included in your software package) contains additional
form resources as well as key filters that control the entry of characters into
textboxes. Using FaceSpan, you can import, delete, copy, and paste these
resources.

Scripts
Scripts can be attached to any window or window item, or to the project itself.
You can use scripts to change the way windows and window items look or
behave (in edit mode or during runtime) by assigning new values to their
properties. Scripts contain handlers and other subroutines. Handlers are

Chapter 1: Overview of the Environment

FaceSpan’s Interface objects
subroutines that are activated by the messages that are sent in response to user
interaction with the application. A project script—the main script for the
application you are developing—is a set of handlers and properties that
defines the project’s behavior.
29

30

Chapter 1: Overview of the Environment

Basic Development Tasks
Basic Development Tasks

Managing projects
Once you’ve created a project, its Project Window displays a constantly
updated overview of the project’s resources: window templates, menu
templates, artwork, forms—including key filters and scripting additions—
and storage items. You can use the Project Window to access the project
script, add new resources, open the appropriate editors for editable project
resources, or choose items to be cut, copied, pasted, deleted or renamed. In
addition, the Project Window helps you to copy and paste resources between
projects.

Editing menus
FaceSpan’s Menu Editor makes creating custom menus for your project as
simple as clicking and typing. After you type names for each menu template
and the items it contains, you can assign optional mark characters and
Command-key equivalent characters to the menu items. Once menu
templates are constructed, you can easily “attach” them to a project (or any of
its windows), and add handlers to define the actions of each menu’s
commands. You don’t have to worry about making menus open and highlight
when users click them; FaceSpan automatically does that for you.

Editing windows
Inside FaceSpan’s Window Editor, you can create and fine-tune window
templates and the window items they contain. You add window items by
selecting them from a palette of objects, then dragging and dropping them
onto a window template, or click-dragging them to size in a window template.

Most of the window items automatically behave like similar objects in
standard Macintosh applications. Once you’ve created a window item,
FaceSpan displays its properties and their current values. You can define and
adjust each item’s appearance and behavior by using the Window Editor’s
tools, or by using scripts to assign values to the window item’s properties.

Chapter 1: Overview of the Environment

Basic Development Tasks
Scripting
After you have created the windows and menus for your project’s user
interface, you write scripts to control the run-time behavior of the project, its
windows and menus, and their items. You can attach a script to any project,
window, or window item.

The Script Editor not only provides a standard text-entry environment for
creating and editing scripts, but on-line reference pop-up menus and a script
recorder as well. Using the popups, you can choose references to windows,
objects, properties, and handlers; FaceSpan then automatically inserts the text
of the reference into your script for you. Using the Script Editor’s script
recorder, you can generate new scripts from sequences of actions you perform
in recordable applications.

Testing
FaceSpan supports testing at all stages of application development. You can
test windows while constructing them, and check scripts for compilation
errors at any time while scripting. You can use the Message Windoid to send
sample messages to any object, and to log AppleEvents and replies. Once
you’ve written the project script you can test your project’s run-time behavior
by simply clicking the Run button in the Project Window.
31

32

Chapter 1: Overview of the Environment

Basic Development Tasks

Chapter 2:

Project Management
Contents:

Project Management 35

Instructions 45

Chapter 2: Project Management

Project Management
Project Management

You should read this chapter if you want to know:

➤ how to create and save projects

➤ how to import and manage project resources: Windows, Menus, Artwork,
Forms, and Storage

A completed FaceSpan project is made up of windows, menus, scripts,
artwork, and other resources, all of which function as a unified application.
To assist you in creating, editing, and testing interface components, FaceSpan
displays a Project Window for each open project document and application
being edited.

All project-level editing centers around the Project Window. While the
Project Window is active, all of the commands in the File menu and the Edit
menu pertain to the project. You can use the File menu to create and save
projects, to revert an edited project to the state in which it was last saved, to
convert a project to an application, and to print the project’s contents. You can
use the Edit menu to cut, copy, paste, clear, and duplicate the resources listed
in the Project Window.

Design-time editing done directly from the Project Window can include the
modification of the project script, and the addition or modification of project
resources (window templates, menu templates, artwork, form definition
resources, and storage items). In addition to providing a global project
management environment, the Project Window allows you to test-run your
project or application.
35

36

Chapter 2: Project Management

Project Management
The Project Window

Using the Project Window, you can…

➤ Edit the script of the project

➤ Test projects under construction and run completed projects

➤ Save projects as applications

➤ Cut, copy, and paste any resource among projects

➤ Open editors for editable project resources

➤ Create, inspect, and delete window and menu templates

➤ Import artwork from any Macintosh document or
application

➤ Create, define, or delete storage items

The Project Window is divided into two sections. The top part contains the
Project icon, along with the project script controls. The lower part of the
Project Window displays categorized lists of the project’s component
resources, as well as controls for editing them.

Chapter 2: Project Management

Project Management
Project icon
The Project icon, located near the top left corner of the Project Window,
identifies the form in which the open document was last saved: as a project
document, an application, or a droppable application.

Project Script controls
Project Script controls include the Project Script button and the Run button.
You can use the project script controls to inspect, edit, and run the project
script—the main script of the application you are developing.

Project Script button
Click the Project Script button to open the Script Editor that contains the
project script.

Run button
When you click the Run button, FaceSpan attempts to compile any open
scripts, hides any open window templates, and runs the project script.

While the project script is running, the Project Window temporarily shrinks
(as shown below) and the Run button becomes a Stop button. You can then
click the Stop button to halt the running project script.

Project
document
icon

Application
icon

“Droppable”
application
icon
37

38

Chapter 2: Project Management

Project Management
Project Window listbox and View radio buttons

The resources displayed in the Project Window listbox are determined by
which View radio button you select. Depending on the view selected, the
Project Window listbox displays the names of the window templates, menu
templates, artwork, form definition resources, or storage items contained in
the project.

Chapter 2: Project Management

Project Management
Windows View
The window templates associated with a project are created within FaceSpan
and can be any of the three types of window classes: document windows,
modal dialogs, and floating windoids. For additional information about
creating window templates, see to Chapter 3: “The Window Editor.”
39

40

Chapter 2: Project Management

Project Management
Menus View
Menu templates are created within FaceSpan, and then associated with
particular windows of the project or with the project itself. Menus are
displayed in the menu bar during runtime only.

In Menus View, the Project Window listbox contains a horizontal divider;
menu templates listed above the divider are associated with the project, while
menu templates below the divider are associated with specific windows. You
can relocate a menu template in the list by click-dragging its name to a new
position in the list. For additional information about creating menu templates,
see Chapter 4: “The Menu Editor.”

Chapter 2: Project Management

Project Management
Artwork View
Artwork resources can include pictures (PICT), icons (cicn, ICN#, and
ICON), color patterns (ppat), and black-and-white cursors (CURS). Artwork
is not created in FaceSpan, but can be imported into a project from any
Macintosh document or application, then renamed and managed using the
Project Window. You can find more information about artwork and their
properties in Part III, Chapter 12: “Window Items” and Chapter 15: “Special
Artwork and Text Style Classes.”

Forms, etc. View
Items listed in the Forms, etc. View can include form definition resources—
such as control definitions (CDEFs), menu definitions (MDEFs), list
definitions (LDEFs), and key filters (Keyƒ)—as well as scripting additions.
When forms are listed in the Project Window, FaceSpan places a small icon
in front of each name to indicate the kind of form it is: a “C” (as in CDEF)
represents forms for buttons and gauges, an “L” (as in LDEF) marks the
forms for listboxes, an “M” (as in MDEF) denotes forms for menus and
popups, and a “K” represents key filters for textboxes. Scripting additions are
marked with the standard scripting addition icon. You can view
documentation about each form by double-clicking its name in the list; a
dialog box containing an explanation of the form and its use then displays.
41

42

Chapter 2: Project Management

Project Management
Forms and scripting additions are not created in FaceSpan, but can be
imported into a project and deleted from a project using the Project Window.
To assign a particular form to a window item, you must set the item’s form
property or key filter property to the name of that form or key filter. You
can find more information about forms in Part III, Chapter 13: “Window
Items.” Scripting additions are discussed in Part II, Chapter 10: “Scripting
Your Application.”

Note

➤ While a project that uses a scripting addition is under development, the
scripting addition must be in the Scripting Additions folder (located in the
Extensions folder of your System folder). When you are ready to prepare the
project for distribution, you must then import the scripting addition into the
project so that a copy of it is made a integrated permanent part of the project.

Chapter 2: Project Management

Project Management
Storage View
A storage item is a piece of data kept in persistent storage within a project.
Storage items are created and edited in FaceSpan. You can find out more
about them by reading Chapter 5: “The Storage Item Editor.”

Project Window Buttons
The Delete, New, Open, and Import buttons— in combination with Edit menu
commands—permit you to modify any editable project resources. The
operations you can perform depend on the resource type selected with the
View radio buttons. Clicking an item once selects it. Double-clicking an
editable item opens its editor.

➤ Window templates an menu templates can be:
Created by using the New button
Opened for editing by using the Open button
Deleted by using the Delete button

➤ Artwork resources can be:
Imported from any other Macintosh file by using the Import button
Renamed by using the Open button
Deleted by using the Delete button
43

44

Chapter 2: Project Management

Project Management
➤ Form resources and key filters can be:
Imported from other FaceSpan projects using the Import button
Deleted by using the Delete button
and, their documentation viewed by using the Open button

➤ Storage items can be:
Created by using the New button (or by script)
Opened for editing by using the Open button
Deleted by using the Delete button

About Copyrights
Remember that many pictures, movies, desktop patterns, cursors, and other
resources are not yours to distribute. Some may be distributed with
permission, others require that you acknowledge the author, pay a fee, and so
on. Do not include a resource in your project unless you know that it is
permissible to do so. Even without a copyright attribution, the author of a
resource still holds the copyright.

Chapter 2: Project Management

Instructions
Instructions

Using File menu and Edit menu commands
While the Project Window is active, all of the commands in the File menu and
Edit menu pertain to the project. You can use the File menu to create and save
projects, to revert an edited project to the state in which it was last saved, to
convert a project to an application, and to print the project’s contents. You can
use the Edit menu to cut, copy, paste, clear, and duplicate the resources listed
in the Project Window listbox.

Creating a new project
Choose New Project from the File menu

FaceSpan creates a new “Untitled” project document and displays its Project
Window.

Note

➤ If you have made a customized default project, FaceSpan uses it as a
template for each new “Untitled” project document.• FaceSpan also creates a
new project each time you run it by double-clicking its Finder icon.

Making a default project
You can create your own customized default project by saving a project
document with the name, “Default Project” and placing it in the same folder
as FaceSpan. When FaceSpan is asked to make a new “Untitled” project, it
will look for a customized “Default Project” in its folder. If the project is
found, FaceSpan will use a copy of this project as the new project. If such a
project is not found, FaceSpan will create and display a very slimmed down
default project.
45

46

Chapter 2: Project Management

Instructions
Opening an existing project or editable
application

While FaceSpan is open, choose Open Project… from the File menu,
then locate the project to be opened in the Open File dialog.

FaceSpan displays the Project Window of the selected project.

or

If FaceSpan is not open, double-click your project document’s desktop
icon.

FaceSpan opens and displays the Project Window of the selected project.

Saving a project
Choose Save Project from the File menu.

FaceSpan saves the project under its current name. If the currently active
project has not yet been saved, FaceSpan displays the Save Project As dialog,
with which you can save the project in editable form under a new name,
optionally as a Miniature or Complete Application.

Chapter 2: Project Management

Instructions
Saving a project as an editable application

1 Choose Save Project As… from the File menu.

FaceSpan displays the Save Project As dialog.

2 Enter the name under which the document will be saved.

3 From the Kind pop-up menu, choose the format in which you want to
save the document:

Miniature Application The document will be saved as an application that can
be run on any Macintosh on which the FaceSpan
extension and AppleScript (version 1.1 or later) have
been installed.

Note The ability and license to distribute FaceSpan
applications royalty-free and run them on any Mac
applies only to the full version of FaceSpan. You are not
allowed to distribute or use applications created with
the FaceSpan demo or the single run-time version of
FaceSpan on any other Mac unless it has a licensed
copy of FaceSpan installed on it.

Complete Application The document will be saved as a stand-alone
application that can be run on any Macintosh on which
AppleScript (version 1.1 or later) has been installed.

Note The ability and license to distribute FaceSpan
applications royalty-free and run them on any Mac
applies only to the full version of FaceSpan. You are not
allowed to distribute or use applications created with
the FaceSpan demo or the single run-time version of
FaceSpan on any other Mac unless it has a licensed
copy of FaceSpan installed on it.
47

48

Chapter 2: Project Management

Instructions
4 If you chose to save the document as a Miniature or Complete
application, you can click the Include Dictionary checkbox to include the
dictionary.

Excluding the dictionary saves approximately 16K of disk space, but
hinders the scripting of that application by other applications.

5 Click the Save button.

Saving a project as a non-editable, run-only
application

1 Choose Save As Run Only… from the File menu.

FaceSpan displays the Save As Run Only dialog.

2 Enter the name under which the document will be saved; this name
cannot be the same as the current name of the project.

Chapter 2: Project Management

Instructions
3 From the Kind pop-up menu, choose the format in which you want to
save the document:

4 If you want to include the dictionary, click the Include Dictionary
checkbox.

Excluding the dictionary saves approximately 16K of disk space, but
hinders the scripting of that application by other applications.

5 If you want Localization Support, click the Localization Support
checkbox.

When Localization is selected, and the application is saved, all names of
menus, textboxes, titlebars, buttons, etc. are stored into the resource fork
of your application. This is to accommodate the use of AppleGlot for
Language translation.

6 Click the Save button.

Notes

➤ The run-only version of an application can no longer be edited.

➤ When an application is saved as run-only, it does not contain the dictionary.
The effect is that the application appears to not be scriptable, when it actually
is scriptable.

Miniature Application The document will be saved as an application that can
be run on any Macintosh on which the FaceSpan
extension and AppleScript (version 1.1 or later) have
been installed.

Note The ability and license to distribute FaceSpan
applications royalty-free and run them on any Mac
applies only to the full version of FaceSpan. You are not
allowed to distribute or use applications created with
the FaceSpan demo or the single run-time version of
FaceSpan on any other Mac unless it has a licensed
copy of FaceSpan installed on it.

Complete Application The document will be saved as a stand-alone
application that can be run on any Macintosh on which
AppleScript (version 1.1 or later) has been installed.

Note The ability and license to distribute FaceSpan
applications royalty-free and run them on any Mac
applies only to the full version of FaceSpan. You are not
allowed to distribute or use applications created with
the FaceSpan demo or the single run-time version of
FaceSpan on any other Mac unless it has a licensed
copy of FaceSpan installed on it.
49

50

Chapter 2: Project Management

Instructions
Reverting to the last saved version of a project
Choose Revert Project from the File menu.

FaceSpan discards all changes made since the last time the project was saved.

Note

Changes made to a project become permanent when the project is saved. A
project cannot be reverted once it has been saved.

Editing a project's script
Click the Project Script button.

The Script Editor opens to display the project script.

Note

➤ See Chapter 6 for more information about FaceSpan’s script editor➤.

Running a project
Click the Run button.

FaceSpan hides all open window templates, compiles any uncompiled scripts,
and runs the project's script.

The Run button changes into a Stop button with which the run can be halted.

Stopping a running project
1 Click the running project's Project Window to make it active.

2 Click the Stop button.

FaceSpan immediately halts the running script, closes all windows opened
during the run of the project, and re-displays all open window templates.

The previously Stop button changes back into the Run button.

Finding an existing project resource
1 Click the View radio button for the appropriate type of resource.

2 Locate the resource in the list.

(For example, if you’re searching for a particular window template, click
the Windows View radio button, then locate the window template's name
in the list.)

Chapter 2: Project Management

Instructions
Cutting a resource from another project
1 Click the appropriate View radio button in the Project Window listbox.

2 Select the name of a window template, menu template, storage item,
artwork, or form resource you want to cut.

3 Choose Cut from the Edit menu.

The selected item is copied to the clipboard and deleted from the list.

Copying a resource from another project
1 Click the appropriate View radio button in the Project Window.

2 Select the name of a window template, menu template, storage item,
artwork, or form definition resource you want to copy.

3 Choose Copy from the Edit menu.

The selected item is copied to the clipboard.

Note

➤ Artwork can be copied from other sources such as another application or a
scrapbook.

Pasting a resource from another project
1 Copy or cut a window template, menu template, storage item, artwork,

or form resource from the source project as described above.

2 Click the Project Window of the destination project to make it active.

3 Choose Paste from the Edit menu.

4 If a resource with the same name already exists, a dialog will ask you to
give the pasted resource a unique name; type a unique name, then click
OK.

The item on the clipboard is pasted into the active project document.
FaceSpan automatically adjusts the View radio buttons to the resource type
of the pasted item.

Notes

➤ When copying windows or window items, do not close the project copied
from, before pasting into the destination project, or you will lose dependent
resources.
51

52

Chapter 2: Project Management

Instructions
➤ Form definition resources should be copied and pasted only from other
FaceSpan projects.

Duplicating a resource
1 You can select the resource using the Project Window listbox, copy it,

then paste it back into the same project.

or

Select the resource, then choose the Duplicate command from the Edit
menu.

A dialog asks you to give the new resource a unique name.

2 Type a unique name for the resource into the dialog box.

The name of the new resource is displayed in the Project Window listbox.

Deleting a resource
1 Click the View radio button for the type of resource to be deleted.

2 Select the name of the resource to be deleted.

3 Click the Delete button.

or

Choose the Clear command from the Edit menu.

FaceSpan displays a confirmation dialog.

4 Click the Delete button.

The selected item is now deleted from the project.

Creating a new window or menu template
1 Select the View radio button for the type of resource to be created.

2 Click the New button.

FaceSpan opens an editor for a new, “Untitled” item of the selected type.

Editing an existing window or menu template
1 Click the View radio button for the type of resource to be edited.

A list naming existing resources of the select type is displayed.

2 Double-click the name of a window or menu template…

Chapter 2: Project Management

Instructions
or

Select the name of a window or menu template, then click the Open
button.

The appropriate editor opens.

Importing artwork:
pictures, icons, color patterns, and cursors

1 Click the Artwork View radio button.

2 Click the Import… button.

FaceSpan displays an Open File dialog.

3 Locate and select a project, scrapbook, application file, or document
containing artwork to be imported, then click the OK button.

FaceSpan displays the Artwork Chooser dialog, which contains a
scrolling list of the artwork belonging to the opened file.

4 Optionally, click the Artwork Chooser's Open Other… button to open a
different file.
53

54

Chapter 2: Project Management

Instructions
5 Select artwork in the Artwork Chooser's scrolling list, then click the OK
button.

The selected resources are copied into your project.

Renaming existing artwork
1 Click the Artwork View radio button.

2 Double-click the artwork in the list…

or

Select the artwork in the list and click the Open button.

The Resource Name dialog opens.

3 Enter the new name for the artwork in the dialog's Name textbox.

4 Click the dialog's OK button.

Importing form definition resources and scripting
additions:

1 While the Forms, etc. View is selected in the Project Window, click the
Import button.

Chapter 2: Project Management

Instructions
A standard Open dialog displays.

2 Select the name of the project or the name of the scripting addition you
want to import, then click OK.

An Import dialog displays.
55

56

Chapter 2: Project Management

Instructions
3 Select the name of the form or scripting addition you want to import, then
click the Import button.

The name of the selected form definition resource or scripting addition is
added to the Forms, etc. View of the Project Window listbox.

Chapter 2: Project Management

Instructions
Viewing documentation of form resource
1 Click the View radio button for “Forms, etc.”

2 Double-click the form resource in the list.

or

Select the form resource in the list and click the Open button.
57

58

Chapter 2: Project Management

Instructions
The Form Documentation dialog opens, displaying documentation for
the selected type of form.

3 Click the OK or Cancel button to close the dialog.

Creating a new storage item
1 Select the Storage View radio button.

2 Click the New button.

FaceSpan opens an editor for a new, untitled storage item.

Editing an existing storage item
1 Click the Storage View radio button.

A list naming existing storage items is displayed.

2 Double-click the name of a storage item in the list.

or

 Select a name, then click the Open button.

The Storage Item Editor opens for the selected item.

Chapter 2: Project Management

Instructions
Tips: On-screen position of the Project Window
FaceSpan keeps track, from one session to the next, of information such as
the last on-screen position of window templates, the Property Bar, the Tool
Palette, and the Project Window. This information is stored in a preference
file inside the Preferences folder of the System folder, so that settings can be
restored when FaceSpan is next opened.

If you want FaceSpan to return to its default settings, you can drag its
preferences file to the trash, or you can hold both the Option Key and
Command Key while FaceSpan is in the process of launching.
59

60

Chapter 2: Project Management

Instructions

Chapter 3:

The Window Editor
Contents:

The Window Editor 63

The Window Template 65

The Tool Palette 66

Drag and Drop support in the Window Editor 71

The Property Bar 72

Object Information dialogs 79

Instructions 80

Tips for Designing Windows 87

Chapter 3: The Window Editor

The Window Editor
The Window Editor

You should read this chapter if you want to know:

➤ how to use FaceSpan’s tools to create user interface windows and window
items

Inside the Window Editor, you can create, design, and edit window templates.
A project’s user interface is made up of three classes of windows: document
windows, modal dialogs, and floating windoids; each can be controlled
through scripts. Though a project's windows perform as a coordinated user
interface while the project is running, each window is first created as a
template—a model of the run-time window—and is then edited as an
individual unit in the Window Editor. Once a window template is created,
FaceSpan then saves a description of it, and uses that description to create the
actual window object at runtime.

When you create a new window, FaceSpan displays a blank, modifiable
window template, and two windoids—the Property Bar and the Tool Palette,
collectively referred to as the Window Editor. You can use the Tool Palette
to create, enter text into, select, and arrange window items. Using the
Property Bar, you can adjust the properties of the window and its items.
63

64

Chapter 3: The Window Editor

The Window Editor
While the Window Editor is active, you can use the File menu’s commands
to close a window template, to revert and save an edited window template to
the state in which it was last saved, and to print reports of the window
template’s contents. Design-time editing done directly from the Window
Editor can include accessing the active window template’s script, creating or
modifying window items, and accessing a selected window item’s scripts. In
addition to providing a window design environment, the Window Editor
allows you to test the way the window and its window items will respond to
user input during runtime.

Chapter 3: The Window Editor

The Window Template
The Window Template

Once a window template has been created, it acts as a container for its
window items and for scripts. When a window template is copied from one
project and pasted into another, its window items and scripts are copied and
pasted with it.

The class property of the window template is set by default to document
window, so that it initially looks like a standard Macintosh document window
containing a title bar, a close box, and a resize box.

At any point in the editing process, you can change the appearance and
behavior of a window template by defining it as a document window, modal
dialog, or floating windoid, and you can remove any of the control boxes by
adjusting the window’s closeable, resizable, zoomable and
titled properties.

The dotted portion of the window template is the area in which window items
can be created and arranged. The dots mark an 8-pixel-by-8-pixel grid. If the
Snap To Grid command in the Object menu is turned on during editing, the
corners of window items being drawn, moved, or resized automatically snap
to points on the grid.
65

66

Chapter 3: The Window Editor

The Tool Palette
The Tool Palette

The Tool Palette provides three Cursor tools for manipulating objects in the
window template and fifteen Object Maker tools for creating new window
items.

Arrow tool

Selecting the Arrow tool puts the active window template into Play Mode.
During Play Mode, the window template’s grid disappears and the template
behaves much as it will while the project is running. You can use the Arrow
tool to perform initial testing of the way the window and window items
respond to user input. For example, during Play Mode you can click push
buttons, select listbox items, choose from popups, and so on, just like the
application user would during runtime.

In addition, you can use Play Mode to test how items look or behave using
different properties. If you click a selectable window item (or choose any item
from the Selected Item popup in the Property Bar), the Property Bar’s display
is set to that item. You can then change the item’s properties and observe the
results of those changes, all without leaving Play Mode. Changes made to the
window template and its items during Play Mode are kept when you return
the window template to Edit Mode.

Chapter 3: The Window Editor

The Tool Palette
Note

The project script is not run in Play Mode, so open window commands are
not executed, and some application and window script properties may not be
initialized. See Chapter 8: “The Testing Environment” for more information
about testing during Play and Run Mode.

I-beam tool
3

Using the I-beam tool, you can enter a title or text content in window items
that display text (such as listboxes, radio buttons, checkboxes, and labels and
so on). The Tab key moves the I-beam tool from window item to window item
in the window template in lowest to highest index order (the index property
indicates the layer that each window item occupies in the window template).
You can edit the title or contents text of a window item by selecting it
with the I-beam tool, then typing text at the appropriate location.

Object Mover tool

With the Object Mover tool, you can select, move, and resize window items
in the window template. When you select a window item with the Object
Mover tool, the window item is surrounded by a selection marquee, and its
properties are displayed in the Property Bar. You can select multiple window
items with the Object Mover tool by holding down the Shift key while
clicking them, or you can drag a selection rectangle around them. While the
Object Mover tool is chosen, the Tab key moves the selection from window
item to window item in lowest to highest index order.

Viewfinder Crosshair Resize arrow
67

68

Chapter 3: The Window Editor

The Tool Palette
The Object Mover tool changes to a viewfinder when moved over a window
item. You can click to select the window item, or drag to move it.

The Object Mover tool changes to a crosshair when moved over an area of the
window template that contains no window items. You can click to select the
window itself while deselecting all window items, or you can drag a rectangle
around a group of window items to select the group.

The Object Mover tool changes to a resize arrow when moved over the corner
of a window item. You can click-drag the arrow to resize the window item.

Note

➤ The Object Mover tool also changes to a crosshair when moved over a
window item whose position has been locked (by selecting the item, then
choosing the Lock Position command from the Object menu. You can select
a window item whose position is locked by clicking it, but you cannot move
or resize it until its position is unlocked.

Chapter 3: The Window Editor

The Tool Palette
Object Maker Tools
There are fifteen Object Maker tools you can use to make window items
including: push button, radio button, checkbox, label, textbox, editable
textbox, icon, pictbox, movie, listbox, popup, gauge, table, box and graphic
line.

You can make a window item by selecting the appropriate Object Maker tool,
then either clicking and dragging to create the new window item in its
window, or—if Drag and Drop is installed on your Macintosh—dragging and
dropping the Object Maker tool’s icon onto the window template. If the Snap
To Size and Snap To Grid commands in the Object menu are turned on,

push button radio button checkbox

label textbox editable textbox

icon pictbox movie

listbox popup gauge

table box graphic line
69

70

Chapter 3: The Window Editor

The Tool Palette
FaceSpan automatically aligns the window item’s position to the grid and
adjusts its width and height to “natural” dimensions (in accordance with
Macintosh Human Interface Guidelines).

Once you’ve created a new window item, the Object Maker tool changes to
the Object Mover tool so that you can continue editing.

Hint To retain the same Object Maker tool after creating a window
item—if, for example, you wish to create several window items of the same
class—hold down the Command key while creating the item. (You can also
hold down Option and drag to clone a window item.)

Chapter 3: The Window Editor

Drag and Drop support in the Window Editor
Drag and Drop support in the Window
Editor

If you have Drag and Drop support installed on your Macintosh computer,
you can create an object by selecting the Object Maker tool, then dragging out
a rectangle in the window template. This works several ways; you can Drag
and Drop from the Tool Palette, or Drag and Drop from the desktop, or Drag
and Drop from another file.

Drag and Drop from the Tool Palette
You can drag an Object Maker Tool’s icon from the Tool Palette, then drop
it onto a window template to create the selected class of object.

Drag and Drop from the desktop
You can Drag and Drop selected text and picture clippings from the desktop
onto a window template being edited. When you do, the appropriate object is
automatically created and filled with the selected content. (In the case of
pictures, the picture is automatically added to the project’s artwork.)

Note

➤ If a picture is dragged and dropped onto a window during run-time, an
image of the picture is shown in the window, but the actual picture is not
saved into the project.

Drag and Drop from another file
You can select and drag text from any other source and drop it onto the
window template being edited. A textbox is automatically created and filled
with the selected content.
71

72

Chapter 3: The Window Editor

The Property Bar
The Property Bar

The Property Bar displays the values of common properties of a selected
window item (or, of the window template if no window item is selected) and
permits you to change the values as needed.

Note

➤ While multiple items are selected, certain areas of the Property Bar—such
as those used to open a script editor, or adjust properties—become blank or
disabled, but the controls that remain enabled can be used to simultaneously
change the applicable properties of all of the selected window items.

General Controls

The Property Bar’s general controls include (from left to right): Selected Item
popup, Window Item Index textbox, the Item Name textbox, Properties
popup, Balloon Help button, and Object Script button. You can use these
general controls to identify the item that is currently selected, as well as
access its script, Balloon Help text, and class-specific properties.

Selected Item popup

The Selected Item popup (pop-up menu) lists the name of the active window
template and its window items. Beside each name in the list is an icon—
indicating the class of each window item, and a number—indicating the

Chapter 3: The Window Editor

The Property Bar
number of the layer that the window item occupies in the window template.
A check mark next to an icon indicates the currently selected item. You can
use the popup to select any window item or the window template itself.

Hint This is an easy way to select invisible items or items off the screen.

Note

➤You can use the Tab key to move the selection from window item to window
item in ascending index order, or use the Select… command from the Object
menu.

Window Item Index textbox

This textbox displays the index of the selected window item. The window
item’s index is the number of the layer that the item occupies in the window
template. You can change the index of the selected window item by typing
a different number in the index textbox.

Since index numbers are sequential, changing the index of a window item
always changes the index numbers of other window items.

Item Name textbox

This textbox displays the name property of the selected window item (or of
the window itself, if no window item is selected). You can change the name
of the selected window item by typing a new name in the textbox.

Note

➤ If you change the name of a window template, the Windows View of Project
Window listbox updates when the window is closed or the project is saved.

Properties popup

73

74

Chapter 3: The Window Editor

The Property Bar
When clicked, this popup displays a menu of the properties specific to the
class of the selected window item (or of the window itself, if no window item
is selected). You can change the value of a property by choosing the
property’s name in the menu. For some properties, a submenu displays so you
can then choose the value you want.

Properties can also be set using the window template or window item’s
Object Information dialog, and by script. Object Information dialogs are
discussed later in this chapter.

Note

➤You can learn more about scripting by reading Part II of this guide, titled
“Application Development.” For complete information about classes and
properties, refer to Part III: “FaceSpan Object and Language Reference.”

Balloon Help button

When clicked, the Balloon Help button opens the Balloon Help Editor, and
displays the text that will appear in the selected window item’s help balloon.

You can change the content of a window item’s help balloon by typing or
pasting in different text, then clicking OK. When there is content in the
selected object’s balloon help, the Balloon Help button’s icon appears to have
text in it.

Hint In addition to balloons containing text, you can also create picture
balloons by typing the name of a picture—listed in the project’s artwork
resources—into the Balloon Help Editor.

Chapter 3: The Window Editor

The Property Bar
Object Script button

When clicked, the Object Script button opens an editor containing the script
of the selected window item (or of the window itself, if no window item is
selected). If a selected item has a script, the Object Script button’s icon
appears to have text in it.

Note

➤ To allow the message hierarchy to pass through to the project script,
window templates are always considered to have scripts, and so, always
display an Object Script button icon having text.

Text Property controls

The Property Bar’s text property controls include (from left to right): Font
textbox and popup, Size textbox and popup, Style buttons (bold, italic, and
underline), Justification buttons (left, center, and right), Pen Color popup, and
Fill Color popup.

Note

➤ The font, size, and style properties of each newly created window
item default to the corresponding property of the window template itself; they
will match this setting until you change them.

Font textbox and popup

The Font textbox and popup display the font property of the selected
window item. You can change its font by typing a different text font name
in the textbox, or by choosing a different font from the popup, which lists all
the fonts installed on your Macintosh.
75

76

Chapter 3: The Window Editor

The Property Bar
Note

➤ The font property of each newly-created window item defaults to the
font property of the window template itself, and will continue to match this
setting unless it is explicitly changed.

Size textbox and popup

The Size textbox and popup display the size property of the selected
window item. You can change its size by typing a different number in the
textbox, or clicking the popup and dragging to choose a different size.

Note

➤ The size property of each newly-created window item defaults to the
size property of the window template itself, and will continue to match this
setting unless it is explicitly changed.

Style buttons (bold, italic, and underline)

The Style buttons display the styles (if any) of the selected window item. You
can click any Style button to apply or remove a style.

Notes

➤ FaceSpan also supports outline, shadow, condensed, extended, and group
styles. They can be applied using commands from the Style menu.

➤ The style property of each newly-created window item defaults to the
style property of the window template itself, and will continue to match
this setting unless it is explicitly changed.

 Justification buttons (left, center, and right)

Chapter 3: The Window Editor

The Property Bar
The Justification buttons display the justification property of a
selected window item that has a justification property. You can
change the justification by clicking a different button. Only one
justification button can be used for each window item.

Pen Color popup

You can use this popup to set the pen color property of the selected
window item (or of the window itself, if no window item is selected). Pen
color determines the color in which the object’s foreground (outlines and
title) will be drawn. You do not have to assign a pen color; the default is
black.

Fill Color popup

You can use this popup to set the fill color property of the selected
window item (or of the window itself, if no window item is selected). Fill
color determines the color with which the object’s background will be
filled. You do not have to assign a fill color; the default is white.

Position, Width, and Height Property controls

These four textboxes on the Property Bar indicate the position and size
of the selected window item.

Left Position textbox

77

78

Chapter 3: The Window Editor

The Property Bar
The Left Position textbox displays the distance, in pixels, from the left edge
of the window template (0) to the left edge of the selected window item. You
can change the distance by typing a different value into the textbox.

Top Offset textbox

The Top Position textbox displays the distance, in pixels, from the top edge
of the window template (0) to the top edge of the selected window item. You
can change the distance by typing a different value into the textbox.

Width textbox

The Width textbox displays the width, in pixels, of the selected window item.
You can change the width property of the window item by typing a different
value into the textbox.

Height textbox

The Height textbox displays the height, in pixels, of the selected window
item. You can change the height property of the window item by typing a
different value into the textbox.

Chapter 3: The Window Editor

Object Information dialogs
Object Information dialogs

Object Information dialogs allow you to inspect and modify many of the same
window or window item properties as the Property Bar, but provide larger
text-editing areas and more informative displays of current property values.
Some Object Information dialogs display properties not shown in the
Property Bar. The layout and number of editable fields contained in each
dialog depends on the type of object selected. Once the Object Information
dialog is open, you can use the Tab key or the mouse to move from one field
to another.

You can display the Object Information dialog of a window template or
window item by selecting the object, then choosing the Object Info command
from the Object menu. You can also display an Object Information dialog by
double-clicking a window item in an active window template, or selecting an
item, then using the keyboard shortcut (Command) key - I.

Hint Some objects—windows, textboxes, listboxes, and popups—have
expandable Object Information dialogs. To automatically display an Object
Information dialog in expanded form, hold the Option key while double-
clicking the object.
79

80

Chapter 3: The Window Editor

Instructions
Instructions

Using File menu commands
All window editing centers around the Window Editor. While the Window
Editor is active, you can use the File menu’s commands to close a window, to
save a window template, to revert an edited window template to the state in
which it was last saved, and to print reports of the window template’s
contents.

Creating a new window template
1 Highlight the Windows View radio button in the Project Window.

2 Click the New button.

FaceSpan creates a new, “Untitled” window template and displays the
Property Bar and Tool Palette.

Making a default window template
You can create a pre-configured “Untitled” window template by creating a
window template, then naming it “<New>.” Once the <New> window is
added to the project’s list of windows, it will serve as a template whenever
you click the New button while the Project Window is in Windows View.

Opening an existing window template
1 Click the Windows View radio button in the Project Window.

2 Double-click the name of the window template in the list.

or

Click the name of the window template in the list to select it, then click
the Open… button.

FaceSpan opens the Window Editor for the selected window template.

Saving a window template
Choose Close Window from the File menu while the Window Editor is
active.

Chapter 3: The Window Editor

Instructions
FaceSpan closes the Window Editor, and saves all changes to the edited
window template.

Note

➤ Changes made to a window template can be reverted with the File menu's
Revert Project command, any time before the project is saved.

Reverting to the last saved version of a window
template

While the Window Editor is still open, choose Revert Window from the
File menu.

FaceSpan undoes all changes made to the window template since it was
opened for editing.

Note

➤ Changes made to a window template can be reverted at any time before the
project has been saved.

Selecting the window itself
Click an open space in the window template with the Object Mover tool.

or

Select the window name in the Property Bar’s Window Item Name
textbox.

Any previously selected window items are deselected, the window itself is
selected, and its property values are displayed in the Property Bar.

Creating a new window item in the window
template

1 Click the appropriate Object Maker tool.

2 Click at the location in the window template where you wish to place the
new window item.

3 Drag to draw a rectangle the size of the window item.

If the Object menu's Snap To Size and Snap To Grid commands are check
marked true, FaceSpan will automatically align the window item's position to
the grid and adjust its width and height to “natural” dimensions —which vary
according to the class of the selected window item.
81

82

Chapter 3: The Window Editor

Instructions
Creating a new window item in the window
template using Drag and Drop

1 Click and hold the appropriate Object Maker tool.

2 Drag the outline of the Object Maker tool to the window template, then
drop it (release the mouse button).

Notes

➤ When a new item is created using Drag and Drop, FaceSpan adjust its width
and height to “natural” dimensions —which vary according to the class of the
selected window item.

➤ If the Object menu's Snap To Grid command is check marked true,
FaceSpan will automatically align the window item's position to the grid.

Selecting a window item using the mouse
1 Choose the Object Mover tool from the Tool Palette.

2 Click the window item in the window template with the Object Mover
tool.

A selection marquee appears around the selected window item, and the
window item's property values are displayed in the Property Bar.

Selecting multiple items
1 Choose the Object Mover tool from the Tool Palette.

2 While holding the Command key down, drag the items you want to select
in the window template.

A selection marquee appears around the selected window items.

Selecting a window item using the Property Bar
1 Click the downward arrow of the Selected Item popup in the Property

Bar.

A list naming the window template and its items displays.

Object mover tool

Chapter 3: The Window Editor

Instructions
2 Choose the window item’s name from the list.

A selection marquee appears around the selected window item, and the
window item's property values are displayed in the Property Bar.

Selecting multiple window items
1 Choose the Object Mover tool from the Tool Palette.

2 Click the window items in the window template while holding down the
Shift key.

or

Drag a rectangle completely around the window items to be selected.

A selection marquee appears around the selected window items; the Property
Bar displays blank values to indicate a multiple selection.

Deselecting the selected window items
Click a selected window item while holding down the Shift key.

or

Click an unselected window item.

or

Choose an unselected window item from the Property Bar’s Selected
Item popup.

or

Click a blank area of the window template.

Cutting a window item
1 Select the window item to be cut by clicking it with the Object Mover

tool or by choosing it in the Selected Item popup.

2 Choose Cut Items from the Edit menu.

The selected window item is copied to the clipboard and deleted from the
window template.

Copying a window item
1 Select the window item to be copied by clicking it with the Object Mover

tool.
83

84

Chapter 3: The Window Editor

Instructions
2 Choose Copy Items from the Edit menu.

The selected window item is copied to the clipboard.

Pasting a window item
1 Copy or cut a window item.

2 Activate the window template into which you want to paste the copied
item by clicking it with the Object Mover tool.

3 Choose Paste Items from the Edit menu.

The window item is pasted from the clipboard into the window template.

Duplicating a window item
1 Select the window item(s) to be duplicated.

2 Choose Duplicate Items from the Edit menu.

The selected window item(s) are duplicated and deselected, and the
duplicates become the new selection.

Cloning a window item
1 Select the window item(s) to be cloned.

2 Click and drag the selected window item(s) while holding down the
Option key.

Clones of the selected window item(s) appear under the cursor, the original
window items are deselected, and the clones are selected. The clones may
now be dragged away from the originals.

Deleting a window item
1 Select the window item to be deleted by clicking it with the Object

Mover tool, or choosing it from the Selected Item popup.

2 Press the Delete key.

or

Choose Clear Items from the Edit menu.

The selected window item is deleted from the window template.

Chapter 3: The Window Editor

Instructions
Setting a window item's properties using the
Property Bar

1 Select the window item to be edited by clicking it with the Object Mover
tool or choose it from the Selected Item popup.

The selected window item's properties are displayed in the Property Bar.

2 Use the Property Bar’s controls to adjust the window item's property
values

Opening a window item’s Object Information
1 Select the window item to be edited by clicking it with the Object Mover

tool or by choosing it from the Selected Item popup.

2 Double-click the window item or choose Object Info from the Object
menu.

The selected item’s Object Information dialog opens.

Entering text into a window item
1 Choose the I-Beam tool from the Tool Palette.

2 Click the window item into which text is to be entered.

3 Type the text.

Note

➤ You can also use the item’s Object Information Dialog to enter text.

Testing window items and their scripts
Choose the Arrow tool from the Tool Palette.

The window template's grid disappears to indicate that it is in Play Mode. You
may now click buttons, enter sample text in editable textboxes, play movies,
and so on.

Note

➤ You can also use the item’s Object Information Dialog to enter text.
85

86

Chapter 3: The Window Editor

Instructions
Returning the Window Editor to its default
position

FaceSpan keeps track, from one session to the next, of information such as
the last on-screen position of window templates, the Property Bar, the Tool
Palette, and the Project Window. This information is stored in a preference
file inside the Preferences folder of the System folder, so that settings can be
restored when FaceSpan is next opened.

If you want FaceSpan to return to its default settings, you can drag its
preferences file to the trash, or you can hold both the Option Key and
Command Key while FaceSpan is in the process of launching.

Chapter 3: The Window Editor

Tips for Designing Windows
Tips for Designing Windows

Windows are the focal point for interaction with the application user. They
should present your application’s capabilities as clearly and consistently as
possible. Here are a few points to consider when creating windows.

Be conservative
Doing things differently can be innovative, but sometimes it can also be
disorienting or confusing. Remember that most users want software that is
easy to use.

Adapt ideas that work
As a software user, you have probably encountered well-designed windows,
as well as some that fall short in their appearance or their functionality. You
may find it useful to evaluate the windows of applications you frequently use,
noting what works and why.

Keep the design simple
Keep windows simple and purposeful by allowing adequate space around
window elements, and grouping interface objects according to their function.

Be task-oriented
Draw the user’s attention to the task at hand. Plan contrasts of color and line
thickness to call attention to the most important items in your windows.

Order window items logically
In most Western languages, people read form left to right, top to bottom.
Window items in the top left corner will probably be noticed first, so it makes
sense to put frequently used interface elements there. Likewise, lesser or later
used elements (like an OK button), should be placed toward the bottom right
corner.
87

88

Chapter 3: The Window Editor

Tips for Designing Windows
Make tasks simple
Try to choose combinations of window items that make the user's job easier.
For example, if space permits, don't use a popup menu when a group of radio
buttons would present the same choice more conveniently.

Be consistent
When creating applications with multiple windows, you can help your users
to learn how various windows work by using similar sets of objects in similar
arrangements to perform similar tasks.

Test your work
During the design process, looking at a window constantly can inhibit really
“seeing” it. Have someone who has never seen the window before write down
their first impression (without interaction from you) about what works, what
could be improved, and why.

Chapter 4:

The Menu Editor
Contents:

The Menu Editor 91

The Menu Template 92

Menu sequence 94

Instructions 95

Tips for Naming Menus 98

Chapter 4: The Menu Editor

The Menu Editor
The Menu Editor

You should read this chapter if you want to know:

➤ how to create and edit run-time menus for your application

As with windows, you first create menus as templates. Inside FaceSpan’s
Menu Editor, you can create and edit menu templates. After each template, or
model of a menu is made, FaceSpan saves a description of the template and
uses the description to create the actual menu at runtime.

Each menu template has a name—the text that will appear on the menu bar,
and menu items—the commands that appear in the menu when the user opens
it by clicking the menu name in the menu bar. In turn, each menu item has a
name, an optional mark character, and an optional command key
character.

The menus added to the application’s menu bar at runtime can include menus
associated with a particular window, or with the project itself. Then, each
time the application user chooses from a menu, messages are sent to the
frontmost window, and the handlers you add to the script of the window
or project interpret the messages and take the appropriate actions.

FaceSpan’s Menu Editor is a creation and editing environment in which you
can construct menu templates by typing and clicking. You can display the
menus in a project by clicking the Menus View radio button in the Project
Window.
91

92

Chapter 4: The Menu Editor

The Menu Template
The Menu Template

You can open an editor for an existing menu template by clicking the Menus
View radio button in the Project Window, then double-clicking one of the
names displayed in the list.

FaceSpan creates a new “Untitled” menu template when you click the New
button while the Project Window is in Menus View.

Menu Name textbox
You can use the Menu Name textbox to name, or rename a menu template.
The name you type in the textbox will be displayed on the menu bar of the
Menu Editor.

Note

➤While the Menu Editor is open, you can press the Tab key to select the next
existing menu item, or press the Return key to create a new menu item.

Chapter 4: The Menu Editor

The Menu Template
Menu Item name textbox
You can use the Menu Item Name textbox to type the name of each menu
item to be displayed in the menu.

Note

➤While the Menu Editor is open, pressing Return creates another menu item
after the current one. Any unnamed menu items are deleted when the Menu
Editor closes.

Mark Character popup
You can assign a mark character to a menu item by clicking the menu item
to select it, then choosing a character from the Mark Character popup.

Command Key popup
You can assign a command key equivalent to a menu item by clicking the
menu item to select it, then choosing a character from the Command Key
popup.
93

94

Chapter 4: The Menu Editor

Menu sequence
Menu sequence

You can change menu sequence—the order in which menus appear on the
menu bar—using the Project Window. When you click the Menus View radio
button in the Project Window, the Project Window listbox displays the names
of all menu templates stored in the project. They are list in the current order
they will appear on the menu bar.

The Menus View of the Project Window listbox contains a horizontal divider.
Menu templates listed above the divider are associated with the project itself,
and are displayed on the menu bar whenever the project script is run. Menu
templates listed below the divider are associated with specific windows in the
project, and are displayed on the menu bar only while those windows are open
(private menus).

Chapter 4: The Menu Editor

Instructions
Instructions

Creating a new menu template
1 Click the Menus View radio button in the Project Window.

2 Click the New button.

Opening an editor for an existing menu template
1 Click the Menus View radio button in the Project Window.

2 Double-click one of the names in the displayed list.

The Menu Editor for that menu template is displayed.

Selecting a menu item
While the Menu Editor is open, click a menu item to select it.

or

Press the Tab key to move from menu item to menu item.

Inserting a new menu item between existing
menu items

1 While the Menu Editor is open, select the menu item that you want the
new menu item to appear after.

2 Press the Return or Enter key.

3 Choose Insert Menu Item from the Edit menu.

The new menu item now displays at the selected position.

Inserting a new menu item at the top of a menu
1 While the Menu Editor is open, select the Menu Name textbox.

2 Press the Return or Enter key.

or

Choose Insert Menu Item from the Edit menu.
95

96

Chapter 4: The Menu Editor

Instructions
Moving a menu item to a different position
1 While the Menu Editor is open, click the menu item to be moved.

2 Drag the menu item to the desired position within the menu.

Creating a divider bar to separate two groups of
menu items

Create a menu item whose name is a single hyphen (dash) character.

FaceSpan will insert a divider bar in the menu item’s position.

Note

➤ Divider bars can be selected, moved, copied, and pasted just as other menu
items can.

Deleting an existing menu item
1 While the Menu Editor is open, click to select the menu item that you

want to delete.

2 Choose Clear Menu Item from the Edit menu.

or

Delete the menu item’s text.

Note

➤ When a Menu editor is closed, FaceSpan searches the menu for blank items
and removes them.

Copying a menu item
1 While the Menu Editor is open, select the menu item to be copied.

2 Choose Copy Menu Item from the Edit menu or type C-C.

Pasting a menu item
While the Menu Editor is open…

1 Select the menu item that the pasted menu item should appear before.

2 Choose Paste Menu Item from the Edit menu or type C-V.

Chapter 4: The Menu Editor

Instructions
Moving the insertion mark within the Menu
Editor

1 Use the Left Arrow and Right Arrow keys to move the insertion mark to
the left or right one character at a time within the active menu item name
textbox.

2 Use the Up Arrow key to move the insertion mark to the beginning of the
textbox.

3 Use the Down Arrow key to move the insertion mark to the end of the
textbox.

Associating a menu template with a window
1 Choose the Menus View radio button in the Project Window.

2 Drag the menu template’s name to a position below the divider.

3 Add the menu template’s name to the value of the window’s private
menus property (for example, by choosing Object Info from the Object
menu, then dragging the menu template’s name above the divider in the
Object Info dialog’s Private Menus listbox).
97

98

Chapter 4: The Menu Editor

Tips for Naming Menus
Tips for Naming Menus

Since new users probably won’t understand everything about your projects at
first glance, the menus should explain your projects’ capabilities as clearly
and consistently as possible. Here are a few points to consider when creating
names for menus and menu items.

Syntax
In general, a menu’s name should be a noun that explicitly or collectively
describes the items on which the menu’s commands operate, or a verb that
collectively describes the operations that the menu’s commands perform.
Menu item names should be verbs describing processes to be performed on
the menu name’s noun, or phrases in the form:

verb + (optional adjective) + direct object.

Brevity
Try to keep the names of menus and menu items short; long menu names
crowd and fragment the menu bar, and long menu item names result in wide
menu pages that block large parts of the screen when they’re open. If possible,
menu names should be single words rather than phrases.

Clarity
Menu and menu item names should be self-explanatory. Avoid technical
terms or jargon, and choose language that users can understand from
everyday experience.

Consistency
Names of menus and menu items should be consistent with each other and
with the terminology of the Finder’s menus. If several menu items apply the
same process to different types of items, always refer to the process by the
same term. If several menu items apply different processes to the same type
of item, always refer to the item by the same term. When referring to
processes or items mentioned in the Finder’s menus, use the Finder’s terms
for them. Conversely, try to avoid using the Finder’s terminology in reference
to different items or processes in your own menus.

Chapter 4: The Menu Editor

Tips for Naming Menus
Using an ellipsis
An ellipsis (Option key-“;”) should be appended to any menu item that
summons a dialog that obtains more information from the user before a
change.

Assigning command key characters
When choosing command key characters for menu items, attempt to select
characters that relate memorably or logically to their menu item names.
However, avoid using characters from the Finder’s File and Edit menus,
particularly C, V, X, S, O, W, P, and Z, except as they are used in the Finder.

Organizing the menu bar
Standard Finder menus (File, Edit…) should always appear in the positions
they occupy in the Finder’s menu bar. Other menus should be organized
hierarchically in the menu bar, with menus that influence larger items (such
as documents) to the left and menus that influence smaller items (such as text
selections) to the right.

Organizing menus
Careful arrangement of menu items in your menus makes them
understandable, safe, and easy to use. If a menu’s items can’t be arranged to
satisfy the following guidelines, consider moving some items to a new or
different menu.

Related items
Group related items together by a common process that they perform, or a
common object on which they operate.

Consecutive items
If several menu items initiate related processes that should be performed in a
particular order, arrange the items in that order.

Convenience
Position frequently-used items near the tops of menus, so users can access
them easily.
99

100

Chapter 4: The Menu Editor

Tips for Naming Menus
Safety
Items that permanently change data or terminate processes (such as Delete,
Clear, Reformat, Close, or Quit) should be located near the bottoms of their
menus, to prevent users from selecting them accidentally while dragging to
less dangerous menu items.

Chapter 5:

The Storage Item Editor
Contents:

Understanding the Storage Item Editor 103

Instructions 105

Chapter 5: The Storage Item Editor

Understanding the Storage Item Editor
Understanding the Storage Item Editor

You should read this chapter if you want to know:

➤ what storage items are

➤ how to create storage items

➤ how to use storage items in your projects

A storage item is a piece of data kept in permanent storage within a project.
In addition to values, storage items can be scripts or script objects—named
scripts. One storage item can contain several named scripts.

The Storage Editor helps you create, name, define, store, and edit global
information for a project. A project may contain any number of storage items.

If you prefer, you can use a script to make, delete, or assign values to
storage items. Any project storage item—defined by its name and value—can
be accessed, by name or id, from any script in the project.

The Storage Item Editor

The Storage Item Editor is used to create, name, assign a value, and edit a
project’s storage items. You can open an editor for an existing storage item
by clicking the Storage View radio button in the Project Window, then
double-clicking one of the names displayed in the list of project storage items.
103

104

Chapter 5: The Storage Item Editor

Understanding the Storage Item Editor
Storage Item Name textbox

By placing the insertion point inside the Storage Item Name textbox, you can
name a new storage item or edit the name of an existing storage item. The
name you type will be displayed in the Project Window listbox when Storage
is the selected view. If a storage item is unnamed when the editor closes, it is
identified in the Project Window listbox by its id.

Check Syntax button

You can click the Check Syntax button to check the syntax of the value you
have defined. If the syntax is incorrect, an error dialog displays. If you do not
click the syntax button, FaceSpan checks the syntax when you close the
editor, and reports any compilation errors.

Storage Item Value textbox

By placing the insertion point inside the Storage Item Value textbox, you can
assign a value to a storage item. You may assign a value of any type. The
value must appear just as it would in a script’s copy statement—that is, string
values must be in quotes, and so on.

Chapter 5: The Storage Item Editor

Instructions
Instructions

Creating a new storage item
1 Click the Storage View radio button in the Project Window.

2 Click the New button.

A Storage Item Editor displays.

Opening the editor of an existing storage item
1 Click the Storage radio button in the Project Window.

2 Double-click one of the names in the displayed list of storage items.

or

Click once to select an item, then click Open.

The Storage Item Editor displays. You may now rename the item, or replace
its existing value.

Cutting a Storage item
1 Select the name of the storage item to be cut.

2 Choose Cut Storage Item from the Edit menu.

Copying a storage item
1 Select the name of the storage item to be copied.

2 Choose Copy Storage Item from the Edit menu.

Pasting a storage item
1 Click the Project Window of the destination project to make it active.

2 Choose Paste Storage Item from the Edit menu.

A Storage Item Name dialog opens.

3 Give the pasted Storage Item a unique name.

4 Click OK.
105

106

Chapter 5: The Storage Item Editor

Instructions
Duplicating a storage item
1 Select the name of the storage item to be duplicated.

2 Choose Duplicate Storage Item from the Edit menu.

A Storage Item Name dialog opens.

3 Give the duplicated Storage Item a unique name.

4 Click OK.

Deleting an existing storage item
1 Click to select the name of the storage item that you want to delete.

2 Choose Clear Storage Item from the Edit menu.

or

Click the Delete button.

The selected item is now deleted from the project.

Chapter 6:

The Script Editor
Contents:

Understanding the Script Editor 109

Instructions 114

Chapter 6: The Script Editor

Understanding the Script Editor
Understanding the Script Editor

You should read this chapter if you want to know:

➤ how to create and edit scripts using FaceSpan’s Script Editor

➤ how to use the Script Editor’s on-line reference tools

➤ how to record scripts by example

➤ how to check script syntax

FaceSpan’s Script Editor helps you create scripts in an OSA scripting
language by providing a standard text-entry environment for creating and
editing scripts, as well as on-line reference popups that facilitate scripting, a
recorder to record scripts by example, and the ability to test scripts before
they are run.

Using the Script Editor, you can…

➤ Generate editable scripts by activating the script recorder, then interacting
with recordable applications

➤ Facilitate scripting by choosing from popup that automatically insert
correctly-phrased statements and references into your scripts

➤ Edit scripts using Script menu commands such as Find, Replace, and Enter
Selection to make editing easy

➤ Check script syntax for errors that would prevent scripts from compiling or
running

The Script Editor
109

110

Chapter 6: The Script Editor

Understanding the Script Editor
The Script Editor is divided into three sections. The top section contains a title
bar—which identifies the object whose script you are editing, controls for
script recording and error checking, and three on-line reference popups. The
middle part contains a script textbox—which contains the script being edited,
while the lowest part contains the Scripting Language popup.

Script textbox controls

Script textbox controls include buttons you can use to record scripts as well
as check for syntax errors in scripts, and popups you can use to insert handlers
and references into scripts.

Record Script button

When you click the Record Script button, located near the top left corner of
the Script Editor, FaceSpan’s script recorder activates. While recording is in
progress, any interactions you make with a recordable application are
generated into an editable script. When you turn the recorder off—by clicking
the Record Script button a second time—the script you have recorded is
automatically compiled and placed in the Script textbox.

If you prefer to control the script recorder from the menu bar, you can choose
the Recording command from the Script menu.

Hint Recorded scripts may require additional editing before they can be
used effectively in FaceSpan applications. You should check for instructions
and references that may be unnecessary, too general, or too specific.

Handlers popup

Chapter 6: The Script Editor

Understanding the Script Editor
The Handlers popup is a pop-up menu. Its menu items are the messages
recognized by the object being edited.

You can script a handler by choosing a message name from the popup. When
you do, a correctly-phrased starting and ending statement for the handler is
automatically pasted into the Script textbox at the insertion point. Where
applicable, FaceSpan includes placeholder variables in the handler—to
contain a reference to the window item receiving the message and other
parameters.

Any custom handlers you have defined for the object being edited are also
automatically listed in the Handlers popup. If you select the name of a custom
handler listed in the popup, FaceSpan locates and highlights it.

Properties popup

The Properties popup is a hierarchical menu. Its menu items are the classes of
FaceSpan objects; a submenu for each object lists all of its properties. You
can add a property reference within a handler by placing the insertion point
inside the handler, and choosing an object class, then a property from the
popup. A correctly phrased property reference is then automatically pasted
into the Script textbox at the insertion point.

Window Items popup
111

112

Chapter 6: The Script Editor

Understanding the Script Editor
The Window Items popup is a pop-up menu. Its menu items include the name
of the active window template and it’s window items. You can add an object
reference within a handler by placing the insertion point inside the handler,
then choosing an object’s name from the popup. A correctly-phrased object
reference is automatically pasted into the Script textbox at the insertion point.

Hint While using this popup, if you choose the name of the window or
window item whose script you are editing, a reference to theObj is inserted.
In FaceSpan, theObj is a variable containing a reference to the object
receiving a message. Using theObj in a script (rather than, say, the actual
name of a particular object) can be an advantage; you can copy a script that
uses theObj and paste it into the Script Editor of a different object without
having to change literal references.

Check Syntax button

The Check Syntax button is identified by a check mark icon and is located
near the top right corner of the Script Editor. You can click the Check Syntax
button to compile an uncompiled script in the Script textbox. If reference and
syntax errors are found, the script error is highlighted, and an error dialog box
displays an explanation.

Hint FaceSpan also attempts to compile a script when you press the Enter
key while a Script Editor is open.

Note

➤ For more information about run-time script errors and testing, see Chapter
8: “The Testing Environment.”

Script textbox

Chapter 6: The Script Editor

Understanding the Script Editor
The Script textbox contains the script of the object being edited. It supports
standard Macintosh text entry, Edit menu commands (Cut, Copy, Paste,
Clear, and Undo), and Script menu commands (Check Syntax, Recording,
Enter Selection, Find, Find Again, Find in Next, Replace, Replace Again,
AppleScript Formatting).

Note

➤ Appendix A: “FaceSpan Menu Reference” gives an explanation of these
Script menu commands, and all other FaceSpan menu commands.

Scripting Language popup

The Scripting Language popup is located near the bottom of the Script Editor.
When you click the Scripting Language popup FaceSpan displays the names
of scripting languages (Open Scripting Architecture “OSA”systems) installed
on your Macintosh computer. If there is more than one language listed, the
scripting language currently selected has a check mark beside its name. You
can tell FaceSpan to access a different scripting language by using this popup.
FaceSpan lets you use any one or all the OSA languages you have available.
However, all the scripts for a particular object must be written in the same
scripting language.

“Drag and Drop” support in the Script Editor
If you have Drag & Drop installed on your Macintosh computer, in addition
to recording scripts and typing scripts, you can “drag and drop” text from the
Message Windoid or from the Dictionary Windoid into the Script textbox.
113

114

Chapter 6: The Script Editor

Instructions
Instructions

Using Edit menu commands
While a Script Editor is active, Edit menu commands—including Cut, Copy,
Paste, Clear, and Undo—pertain to the active editor.

Opening a script editor for the project script
While the Project Window is active, click the Project Script button in the
Project Window.

A Script Editor containing the project script opens.

Opening a script editor for a window template
or window item

1 Click the Windows View radio button in the Project Window.

2 Double-click the name of a window template.

The selected window template opens.

3 Click the window template itself or a window item to select it.

4 Click the Object Script button in the Property Bar.

or

Use the keyboard Equivalent C-E.

A script editor containing the script of the selected window template, or
window item opens.

Checking for errors
1 Click the Check Syntax button.

FaceSpan attempts to compile the script.

If any reference and syntax errors are found a Script Error dialog box
displays an explanation.

Chapter 6: The Script Editor

Instructions
2 Click OK to dismiss the dialog.

Scripting a message handler
1 Place the insertion point where a handler is to be entered.

2 Choose a handler from the Handlers popup.

FaceSpan pastes an “on” and “end” statement for the chosen handler at
the insertion point. The insertion point repositions itself between the
“on” and “end” statement. Where applicable, FaceSpan includes
placeholder variables to contain a reference to the window item receiving
the message.

3 Type the instructions to be performed each time the message is received.

FaceSpan attempts to compile the script if you close the Script Editor or click
the Check Syntax button.

Adding a property reference to a handler
1 Place the insertion point where the reference is to be inserted.

2 Choose a property name from the Properties popup.

FaceSpan pastes the appropriate property reference into the Script textbox at
the insertion point.

Adding an object reference to a handler
1 Place the insertion point where the reference is to be inserted.
115

116

Chapter 6: The Script Editor

Instructions
2 Choose an object’s name from the Window Items popup.

FaceSpan pastes the appropriate object reference into the Script textbox at the
insertion point.

Recording a script
1 Place the insertion mark at the location where the script recording is to

be inserted.

Note

➤ A recorded script must be inside a handler, or it cannot be run later.

2 Click the Record Script button to start recording.

3 Perform procedures in a recordable application.

4 Click the Record Script button again to stop recording, and to compile
the scripts in the open editor.

FaceSpan attempts to compile the recorded script and places it in the Script
textbox at the insertion point.

AppleScript Formatting
You can use the AppleScript Formatting command in the Script menu to set
global preferences for formatting the text of all AppleScript scripts. Changing
the format of a script’s text changes the appearance of the text, but does not
affect the meaning of the script.

Chapter 6: The Script Editor

Instructions
The AppleScript Formatting dialog displays when you choose AppleScript
Formatting from the Script menu.

You can use this dialog to:

➤ Select the dialect in which scripts will display, by using the Dialect popup.

➤ Restore AppleScript’s default settings for formatting script text, by clicking
the dialog’s Defaults button.

➤ Create global formatting preferences for the text of all AppleScript scripts.

To customize the text formatting of all
AppleScript scripts:

1 Select the script element you want to format, by using the listbox in the
AppleScript Formatting dialog.

2 Choose the format for that script element, by using the Font and/or Style
menu.

3 Click OK.

Preferences for formatting script text are applied when the dialog is closed.
All AppleScript scripts now follow the preferences designated in the dialog.
117

118

Chapter 6: The Script Editor

Instructions

Chapter 7:

Other Scripting Tools
Contents:

Other Scripting Tools 121

Message Windoid 122

Instructions for Using the Message Windoid 127

Understanding the Dictionary Windoid 130

Instructions for Using the Dictionary Windoid 133

Chapter 7: Other Scripting Tools

Other Scripting Tools
Other Scripting Tools

You should read this chapter if you want to know:

➤ how to display the dictionary of any scriptable application

➤ how to use the Message Windoid to send messages to objects or directly to
scripts

➤ how to use the Message Windoid to log AppleEvents as they are generated
121

122

Chapter 7: Other Scripting Tools

Message Windoid
Message Windoid

Interactive Debugging
The Message Windoid allows you to get and set properties, as well as to send
test messages to window items. Like the Script Editor, the Message Windoid
is a standard text-entry environment.

You can use the Message Windoid in either a collapsed or expanded state. If
you use the Message Windoid in its collapsed state, as shown here, the
instructions you type and the results they return are all displayed in a single
textbox. While the cursor is in the textbox, instructions are executed when
you press the Return key.

If you expand the windoid (by clicking its zoom box) a second textbox—or
log—and windoid controls display. The log portion of the expanded windoid
is scrollable and can serve as either a Message Log or an Event Log.

Chapter 7: Other Scripting Tools

Message Windoid
Message Windoid controls

Message Windoid controls include the Scripting Language popup, Message
Log and Event Log radio buttons, and the Log Events and Log Replies
checkboxes. You can use these controls to designate your choice of scripting
language, the current view of the windoid, and the functionality of the Event
log when it is active.

Scripting Language popup

Click and hold the Scripting Language popup to display the names of
scripting languages (Open Scripting Architecture “OSA” systems) installed
on your Macintosh computer.

Message Log radio button

Click the Message Log radio button to display the Message Log View of the
Message Windoid.

Event Log radio button

Click the Event Log radio button to display the Event Log View of the
Message Windoid.

Log Events checkbox
123

124

Chapter 7: Other Scripting Tools

Message Windoid
Click the Log Events checkbox to log AppleEvents while the Events Log is
active.

Note

➤Turning off Log Events also turns off Log Replies, if it was on.

Log Replies checkbox

Click the Log Replies checkbox to log replies to AppleEvents while the
Events Log is active.

Message Log View
When the lower textbox in the expanded Message Windoid is in Message Log
View, a record of all the instructions sent and the results they returned, is
displayed. The Message Log is an extremely handy tool when creating
projects; it allows you to write scripts such as loops and other multi-statement
sequences for immediate execution. Just write the script, select it, then press
the Enter key to execute the script.

The Message Log can be used while a window template is in Edit Mode or
Play Mode, as well as when the project script is running. You can use the
Message Windoid to query things like global variables and access properties
of the current window during Run Mode.

Notes

➤ When using the Message Windoid, the window or window template being
referenced must be frontmost (immediately behind the Message Windoid). If
an open Script Editor is frontmost, an error will result.

Chapter 7: Other Scripting Tools

Message Windoid
➤ You can use the Message Windoid during runtime—to check and change
variables, use the Event Log, and so on—by opening it first, then running the
project script. Remember that while a project script is running, it controls the
menu bar. You must open the Message Windoid first, while FaceSpan’s menu
commands are available.

Event Log View
When the lower textbox is in Event Log View and the active window template
is in Play Mode, or the project script is running, FaceSpan tracks AppleEvents
for that window and can display a log of events, replies, or both.

You can also leave Log Events and/or Log Replies “on” while you change to
Message Log view; FaceSpan will continue to track and log, according to
your selection.

Hint Remember that to use the Message Windoid during runtime—to
check and change variables, use the Event Log, and so on—you must open it
before clicking the Run button.

Logging events to a file
In addition to testing a window in Play Mode with Event Log turned on, you
can also use event logging to assist you in debugging applications saved as
Miniature Applications. If you add a STR# 101 resource to the application
(using resource editor software such as ResEdit), the first item of this resource
will be taken as a file name into which the event log will be written.
125

126

Chapter 7: Other Scripting Tools

Message Windoid
Drag and Drop support in the Message Windoid
If you have Drag and Drop installed on your Macintosh computer, you can:

➤ Drag and Drop text from the Message Windoid into the Script Editor.

➤ Drag text from the log area (displayed in the windoid’s expanded view) and
drop it into the upper textbox of the windoid for editing and/or execution.

➤ Drag text from the Dictionary Windoid and drop it into the Message
Windoid.

Chapter 7: Other Scripting Tools

Instructions for Using the Message Windoid
Instructions for Using the Message Windoid

Displaying the Message Windoid
Choose the Message command from the Window menu or type C-M.

The Message Windoid displays.

Sending a message from the uppermost textbox of
the Message Windoid

1 Type a statement in the uppermost textbox of the Message Windoid.

2 Press the Return Key or the Enter key.

The message is sent.

Sending a message from the lower textbox of the
Message Windoid

1 If the windoid is not in Message Log View, click the Message Log radio
button.

You can:
➤ Type a statement, then select it.
➤ Edit existing text, then select it.
➤ Select existing text.

2 Press the Enter key.

The selected message is sent.

Getting the value of a property of a window item
1 The Message Windoid should be in Message Log View.

2 Use a get statement.

or

Type a reference to the property and window item.

3 Press the Return key.

The value of the property of the window item is displayed in the Message
Windoid.
127

128

Chapter 7: Other Scripting Tools

Instructions for Using the Message Windoid
For example, to get the value of the text font property of the lowest
index button in the window template, type:

Now, press the Return key.

The value of the requested property of the window item is displayed in the
Message Windoid.

For example, to use a reference to the same property and window item,
type:

Now, press the Return key.

The value of the requested property of the window item is displayed in the
Message Windoid.

Note

➤ To reference an item not in the frontmost window or window template,
specify the container of the item. For example, you can reference the
container of a window item by its window’s name or number: window
“name” or, “window 1.” If there is more than one open window having the
same name, the window closest to the front is referenced.

Setting the value of a property of a window item
1 The Message Windoid should be in Message Log view.

2 Use a set statement

3 Press the Return key.

The value of the property of the window item is set.

For example, to set the value of the text font property of the lowest
index button in the window template, type:

Now, press the Return key.

 The value of the requested property (font) of the window item (push button
1) is set (to “Geneva” in this case).

get font of push button 1

font of push button 1

set font of push button 1 to “Geneva”

Chapter 7: Other Scripting Tools

Instructions for Using the Message Windoid
Note

➤ To reference an item not in the frontmost window or window template,
specify the container of the item. For example, you can reference the
container of a window item by its window’s name or number: window
“name” or, “window 1”. If there is more than one open window having the
same name, the window closest to the front is referenced.
129

130

Chapter 7: Other Scripting Tools

Understanding the Dictionary Windoid
Understanding the Dictionary Windoid

A scriptable application’s dictionary (aete resource) contains definitions for
words—objects, commands, or other words—which are understood by that
application. You can use FaceSpan’s Dictionary Windoid to view FaceSpan’s
own dictionary, dictionaries of other scriptable applications, or of scripting
additions.

When you choose the Dictionary command from the Window menu, the
Dictionary Windoid opens. Using the Dictionary Windoid you can display
the dictionary of a selected scriptable application, and can change the view of
an active dictionary.

Applications popup

You display a scriptable application’s dictionary using the Applications
popup. When you first open the Dictionary Windoid, the Applications popup
has an Open Other menu item, a FaceSpan menu item, and—if you have
System 7.5 installed on your Macintosh computer—a Finder Scripting
Extension menu item. You can choose the Open Other menu item to display
a standard Open dialog, from which you can open the dictionary of any other
scriptable application, or the FaceSpan menu item to open FaceSpan’s
dictionary, or the Finder Scripting Extension menu item to open the
Scriptable Finder’s dictionary.

As a convenience, FaceSpan automatically adds the name of any previously
opened dictionary to the Applications popup, so that in the future you can
simply choose the dictionary’s name to open it. The entry is persistent and
displays each time you use FaceSpan, unless you choose to delete it by
holding down the Command key while selecting the application name you
want to delete.

Chapter 7: Other Scripting Tools

Understanding the Dictionary Windoid
When you first open a scriptable application’s dictionary, a hierarchical list
of all its objects is presented. You can display a dictionary entry for a specific
object by clicking its name in the list. While the dictionary is open, you can
return to its hierarchical list by selecting the current application’s name from
the Applications popup.

Notes

➤ If a previously opened application is not found—usually because it is on an
unavailable volume, or possibly because you have removed it from your hard
disk—a notification dialog displays. You can cancel the dialog, or you can
click the Remove button to delete the application’s name from the
Applications popup.

➤ The Scriptable Finder’s dictionary is in the Finder Scripting Extension;
located in the Extensions folder of the 7.5 System Folder.

Hint If you prefer to open an application dictionary without displaying its
hierarchical list of objects, you can hold the Option key while choosing an
application name from the popup; the hierarchical listing is not shown, but the
Objects and Events popups are still available.

Objects and Events popups

You can use the Objects and Events popups to view specific object or event
definitions in the active dictionary.
131

132

Chapter 7: Other Scripting Tools

Understanding the Dictionary Windoid
Drag and Drop support in the Dictionary
Windoid

If you have Drag and Drop installed on your Macintosh computer, you can
select text from the Dictionary Windoid, then drag and drop the text into an
object’s Script Editor, or into the Message Windoid.

Chapter 7: Other Scripting Tools

Instructions for Using the Dictionary Windoid
Instructions for Using the
Dictionary Windoid

Opening FaceSpan’s dictionary
Choose FaceSpan from the Applications popup.

FaceSpan’s application dictionary displays in the Dictionary Windoid.

Note

➤ Some FaceSpan objects have properties that can have more than one type
of value; the dictionary does not display all possible types. You will find
comprehensive discussions of objects, their properties and value types, in Part
III: “FaceSpan Object and Language Reference.”

Opening a different scriptable application’s
dictionary

1 Choose the Open Other menu item from the Applications popup.

A standard directory dialog displays.

2 Locate and select the name of the application whose dictionary you wish
to view.

3 Click the Open button.

If the selected application is a scriptable application, its dictionary displays in
the Dictionary Windoid.

Adding an item to the Applications popup
Once a dictionary has been opened, the name of its application is
automatically listed in the Applications popup, and remains until removed.

Removing an item from the Applications popup
1 Select the item to be deleted while holding down the Command key.

A dialog displays asking you to confirm the deletion.

2 Click OK.

The selected item is deleted.
133

134

Chapter 7: Other Scripting Tools

Instructions for Using the Dictionary Windoid

Chapter 8:

The Testing Environment
Contents:

The Testing Environment 137

Play Mode 138

Run Mode 140

Chapter 8: The Testing Environment

The Testing Environment
The Testing Environment

You should read this chapter if you want to know:

➤ how to test the way interface objects will respond to user input

➤ how to test-run your project’s scripts

➤ how compilation and run-time errors are handled

Testing is an integral part of developing any application. With FaceSpan, you
can test-run the project script of your application, as well as test the way
objects will respond to user input, while the project is still under
development.

FaceSpan’s built-in testing environment includes Play Mode and Run Mode.
Play Mode is available while the Window Editor is active, while Run Mode
is initiated from the Project Window. In addition to using Play and Run Mode,
you can check scripts for compilation errors at any time while scripting, and
you can use the Message Windoid as both a scripting tool and a testing tool
throughout development.

The Message Windoid and Testing
The Message Windoid can be used for testing in Edit Mode, Play Mode, or
Run Mode. You can find a detailed discussion of how to use it in Chapter 6:
“The Script Editor.”
137

138

Chapter 8: The Testing Environment

Play Mode
Play Mode

As you create new interface objects, you can test their behaviors by changing
the Window Editor from Edit Mode to Play Mode. You change an active
window template to Play Mode when you choose the Arrow tool from the
Tool Palette. While in Play Mode, you can test the way a window template
and its window items will respond to user input during runtime.

When Play Mode is initiated, the window template’s object grid disappears.
The cursor becomes an I-beam when placed over an editable text field—to
enable text entry—but remains an arrow when interacting with other interface
objects—so that buttons can be clicked, movies played, and so on. The
Property Bar and the Tool Palette remain on-screen unless you use a keyboard
command (Option key-Tab) to hide them.

Chapter 8: The Testing Environment

Play Mode
You return a window template and it’s objects to Edit Mode by clicking the
Object Mover tool, or any of the Object Maker tools in the Tool Palette.

Note

➤ During Play Mode the project script is not run, so open window
commands are not executed and some application and window script
properties may not be initialized.
139

140

Chapter 8: The Testing Environment

Run Mode
Run Mode

Run Mode allows you to test-run your project’s script and any run-time
menus you have created. The project script—the main script for the
application you are building—can control a variety of functions including
menus. If you have created menu templates and associated them with a
particular window, or the project itself, they are added to the application’s
menu bar at runtime.

You initiate Run Mode by clicking the Run button in the Project Window.
When you click the Run button, FaceSpan attempts to compile any open
scripts, hides any open window templates, and runs the project script.

While the project script is running, the Project Window temporarily shrinks.
The Run button becomes a Stop button, which you can click to halt the
running project script.

Chapter 8: The Testing Environment

Run Mode
Project Script Errors during Runtime
If an error is generated during runtime, and the Project Script contains the
script in error, an Error Message dialog box displays.

If you click the Script button in the dialog, FaceSpan automatically opens the
Script Editor for the Project Script, locates script in error, and highlights it so
you can then make the correction.

Window and Window Item Script Errors during
Runtime

If a window or window item script generates an error during runtime, an Error
Message dialog box displays. When you click the Script button in the dialog,
FaceSpan displays a non-editable version of the Script Editor containing the
error.
141

142

Chapter 8: The Testing Environment

Run Mode
FaceSpan displays the error message at the top of the non-editable script, and
highlights the script in error—so that you can see where the error occurred.

Because the error is in the script of the window template (or an item it
contains), in order to correct the script you need to open the window
template—which is available in Edit Mode. Once you halt the run, you can
open the appropriate window template or window item’s Script Editor to
correct the error.

Part II:
The Structure
of Applications

Chapter 9
The Structure of Applications

Chapter 10
Scripting Your Applications

Chapter 9:

The Structure of Applications
Contents:

Understanding the Structure of Applications 147

Application Components 148

Application Structure 151

Chapter 9: The Structure of Applications

Understanding the Structure of Applications
Understanding the Structure of Applications

You should read this chapter if you want to learn about:

➤ the components and structure of applications you can develop,

➤ the components and structure of FaceSpan itself, and

➤ ways to approach application development.
147

148

Chapter 9: The Structure of Applications

Application Components
Application Components

A FaceSpan application consists of objects and their scripts. Objects are
programming or scripting entities that contain information and operations
upon that information. We call the information “properties” and the
operations “handlers.”

Interface Objects
Most of the objects in a FaceSpan application are interface objects, such as
windows, menus, and window items. All interface objects have, in addition
to properties and handlers, visible manifestations—that is, images on the
screen. Many of those images depict things with which we can interact, such
as buttons, menus, and scroll bars. The appearances and behaviors of
interface objects—often called their “look and feel”—are controlled by their
properties and handlers.

Properties
Each property of an object has a name and a value; for example, the t i t le
property of a label might have as its value the text, “Type your name.” It is
the t i t le property that defines the text of the label as it appears in a window.

Every object already has several properties defined by FaceSpan, and each
property has a default value. For example, a push button already has a title
property; its default value is “Button.” These pre-defined properties thus
determine the object’s default appearance.

All the pre-defined properties of all the objects are listed in Part III,
“FaceSpan Object and Language Reference.”

Handlers
Interface objects can be sent messages. These messages are sent in response
to interactions between the object’s image and the application user. For
example, when you select an item from a listbox on the screen, a message is
sent to that listbox object to tell it that the selection event occurred.

Each kind of interaction causes a message with a unique name to be sent to
the object. For example, the message sent when a listbox item is selected is
called the selection made message. There is a pre-defined set of messages
for each object in a FaceSpan application.

Chapter 9: The Structure of Applications

Application Components
An object has pre-defined ways to respond to interactions with the user. For
example, when a listbox item is selected, it is hilited. These pre-defined
actions determine the object’s default behaviors.

In addition, you can write handlers (subroutines) to respond to the messages
that are sent to the object. Your handlers, which are named after the messages,
define what you want to happen when the object receives the messages.

Objects can respond not only to messages caused by interactions, but also to
messages sent by commands in your scripts. Once again, there are several
pre-defined command messages and behaviors, and corresponding handlers
you can write for each object.

The pre-defined command and event messages for all objects are listed in Part
III of this guide.

By the way, the technical term for these messages is “Apple Events.”

Scripts
Every object can have an associated script. The script is displayed when you
open a Script Editor for the object. In the object’s script you can define new
properties, new handlers and subroutines.

You can also give new values to the default properties and augment or
override the object’s default handlers with new actions. In fact, most of the
default handlers for pre-defined command and event messages do very little.
The life of a FaceSpan application is in its scripts—the scripts you write.
149

150

Chapter 9: The Structure of Applications

Application Components
Properties and handlers are expressed in AppleScript or in another “OSA”
scripting language. Here is an example script, written in AppleScript, that
declares a new property, defines a new message (by defining a handler for it),
and defines a handler for a pre-defined message:

Application Object
The application, too, is an object, but it is an organizational entity, not an
interface object. Its purpose is to serve as a vehicle or container for all the
interface objects. It, too, has a script, called the “project script,” and a set of
properties and handlers.

property num: 7 --a new property

--Here is a new handler, which defines a new message:
on boogaloo(n)

repeat with i from 1 to n
beep 1

end repeat
end boogaloo

--Here we give a handler for the pre-defined hilited message.
--The image on the screen highlights before this is called:
on hilited theObj
--This gives a new value to a pre-defined property of a label:

set the title of label “sayWhat” to “Get down!”

--This command sends a pre-defined message to the label:
tell label “sayWhat” to adjust size

--This command sends a message to the new handler defined above:
boogaloo(num)

end hilited

Chapter 9: The Structure of Applications

Application Structure
Application Structure

An application that you create with FaceSpan has a logical structure and a
physical structure.

The logical structure is your view, as a developer, of how the application
components are organized and how they interact.

The physical structure is the real arrangement of program components that
implement the logical structure.

Logical Structure
Logically, the application object and all the interface objects, along with their
scripts, are the application. They are organized hierarchically.

Object hierarchy
The objects in a FaceSpan application are organized into a hierarchy based
upon the physical appearance of the application while it is executing. The
application contains the windows and the windows contain window items—
such as labels and buttons. There can be no window without an application,
and there can be no window items without a window.

So the window “contains” the window items, while the application “contains”
the windows. The application contains the menus, too.

Message hierarchy
The scripts of all the objects follow the same organization as the objects
themselves. The application object’s script contains the window scripts, and
each window’s script contains its window items’ scripts.

A message caused by interaction with a physical object on the screen is sent
to the script of that object. If the script does not handle it, the message goes
up the hierarchy to the script of the containing object, and so forth.

Physical Structure
There is considerably more that goes into an application than what you need
to consider while creating it.
151

152

Chapter 9: The Structure of Applications

Application Structure
The FaceSpan Extension
The FaceSpan Extension is a collection of routines for drawing interface
elements and handling interactions with those interface elements.

A project or application developed with FaceSpan does not draw its own
interface. Instead, routines in the extension draw the interface. Descriptions
of the interface elements are stored within the application or project file. The
descriptions are lists of properties.

Similarly, all the default behaviors of the interface objects are defined in the
FaceSpan Extension. Your scripts are compiled and stored in the application
or project file.

Kinds of applications
A FaceSpan project can be saved as an application in one of several forms.

A Complete Application is one that contains the FaceSpan extension as well
as the descriptions of interface objects and their scripts. This makes the
application self-contained; the extension need not be present in the
Extensions folder.

A Miniature Application is one that is composed of only the descriptions of
interface objects and their scripts. To execute a Miniature Application, the
FaceSpan extension must be present in the system’s Extensions folder.

You would save a projects as a Miniature Application when small size is
important, or as a Complete Application when convenience is most
important.

By the way, an application that can be “drop launched” is a Miniature or
Complete Application that has a handler for the open message in its project
script. FaceSpan detects the open handler and takes care of the desktop icon
and other issues.

How FaceSpan works
FaceSpan itself is an editing and testing environment for creating
applications. FaceSpan is itself written in FaceSpan. That is, the entire editing
and testing interface that you use when developing projects is created by calls
to the FaceSpan extension, a copy of which is imbedded (for convenience) in
FaceSpan itself.

Chapter 10:

Scripting Your Application
Contents:

Scripting Your Application 155

Messages and Handlers 156

Controlling Windows 164

Controlling Menus 169

Controlling Other Applications 171

Using Scripting Additions 180

An Approach to Application Development 182

Chapter 10: Scripting Your Application

Scripting Your Application
Scripting Your Application

You should read this chapter if you want to know:

➤ how to intercept and respond to messages with handlers,

➤ how scripts control applications, windows, and menus,

➤ how scripts control other applications,

➤ how to use scripting additions in your applications, and

➤ how you might approach application development.
155

156

Chapter 10: Scripting Your Application

Messages and Handlers
Messages and Handlers

When a user interacts with a running FaceSpan application, the interaction
sends messages to the application, its windows, and window items. Although
FaceSpan objects respond automatically to user inputs, message handlers can
be added to the scripts of the objects to intercept messages and augment the
application’s responses.

For example, when someone clicks a push button on the screen, the button
image highlights in response to the click, and the button’s script is sent a
hilited message. If the script contains a handler for the hilited
message, the instructions contained in the handler will be performed.

The hilited message handler below sets the title property of its push
button alternately to “Ouch” or “Yeow” when the button is clicked:

The variable theObj contains what is called in AppleScript the “direct
parameter” of the message. In the case of message handlers, the direct
parameter is a reference to the object that is the target of the message. In our
example, it is a reference to the button that the user clicked.

on hilited theObj
if the title of theObj is “Ouch” then

set the title of theObj to “Yeow”
else

set the title of theObj to “Ouch”
end if

end hilited

Chapter 10: Scripting Your Application

Messages and Handlers
Actually, the direct parameter is not necessary. An object’s script is
somewhat like a tell statement: the object is the default object of the
statement. That means that all unqualified references to properties are
assumed to refer to the object itself. Thus, the example handler above could
be written this way:

The parameter theObj is provided as a convenience so that you can make your
property references explicit (like title of theObj, instead of just
title) or pass the reference along to another handler. Although we will
always show the variable name theObj as the direct parameter of handlers,
you can substitute any non-reserved word or omit the variable as needed.

Partial References
When a handler refers to another element within the same container as the
handler's default object, it is not necessary to include a reference to the
container in the object reference. A handler in push button 1 of window
“Same” does not require a reference to window “Same” when referring to
another window item in the same window:

However, when a handler refers to an element of a different container, the
reference must specify the container:

on hilited theObj
if the title is “Ouch” then

set the title to “Yeow”
else

set the title to “Ouch”
end if

end hilited

on hilited theObj
set the enabled of textbox 2 to false

end hilited

on hilited theObj
set the enabled of textbox 2 of window “Different” to false

end hilited
157

158

Chapter 10: Scripting Your Application

Messages and Handlers
Finding An Object’s Container
There are times when you do not know the container of an object that is
passed as a parameter.

To obtain a reference to the container of any FaceSpan object, use the form,
container class of object reference. For example, in the hilited handler
above, the term window of theObj would return a reference to the
window containing the push button.

To get a reference to the application there is a special term: current
application

Sending Messages to Other Objects
Handlers in object scripts can also send messages to handlers in other objects’
scripts. Any of FaceSpan's pre-defined messages can be sent using an explicit
tell:

The message can be sent using an implicit tell, too:

For example, here are two instructions that send hilited messages to other
objects:

If the script of the indicated push button contains a hilited handler, the
handler will execute when it receives the hilited message from another
handler, just as it will if a user clicks the push button with the mouse. In either
case, the direct parameter of the hilited handler is a reference to the push
button that was the target object of the message. Therefore, the effect is the
same, whether it received the message from another object, or as the result of
a mouse click. (But note that the button on the screen highlights only when
actually clicked by the application user.)

tell object reference to message name

message name object reference

tell push button “pshScram” of window “Reactor” to hilited
hilited push button “pshScream”

Chapter 10: Scripting Your Application

Messages and Handlers
Containers Intercept Messages
When a message is sent to an object whose script doesn’t handle it, the
message doesn’t stop there. Instead, the message is automatically continued
to the target object’s containers in search of a handler to intercept it.

For example, if the script of a push button receiving a hilited message
does not have a hilited handler, the message is continued to the window
containing the push button. If the script of the window contains a hilited
handler, the message is handled; if the window does not contain a hilited
handler, the message is continued to the application containing the window.

When a message is handled by an object’s container, as when a window
handles a button’s hilited message, the direct parameter of the handler
contains a reference to the target object, not to the container. Thus the
container, the window in our example, can know the button to which the
message was originally sent.

Unhandled Messages
If one of FaceSpan's pre-defined messages is not handled by the target object
or any of the target object’s containers, all the default behaviors occur, then
it is ignored.

However, if a message that you defined is not handled by the target object or
by any of the target object’s containers, a script error occurs.

Continuing Messages
Even when an object handles a message, you can force the message to
continue to the object’s containers by including a continue statement in
the handler. The following handler in a push button continues the hilited
message to the window containing the button if the value of the button’s
title property is “Yeow”:

on hilited theObj
if the title of theObj is “Yeow” then

continue hilited theObj
else

set the title of theObj to “Yeow”
end if

end hilited
159

160

Chapter 10: Scripting Your Application

Messages and Handlers
Since the continue instruction includes the object reference parameter for
the message, you could even substitute a reference to any object you wish.
This would tell the container that the message was originally intended for a
different object.

Necessary Continuations
There are a few messages for which you would usually provide a continue
statement. You will note that some message names are in the present tense,
while others are in the past tense.

If a message name is in the past tense, then the default behavior of that
message has already been completed. If the message name is in the present
tense, your handler receives the message before the default behavior has
occurred. You can block the default action if it has not yet occurred, but you
must take responsibility for that decision.

The close message, for example, is sent to a window as it is about to close.
Unless you continue the close message, the window will not close. That is
why all the examples of close handlers in this chapter have continue
statements.

Handling Intercepted Messages
The default continuation of messages to the containers of their default objects
makes it possible for a container to control a group of its elements with a
single handler.

For example, imagine that a window named “Colors” contains three push
buttons, named “Red,” “Blue,” and “Yellow.” When the application user
clicks one of the push buttons, the button’s name should be displayed as the
title of label “whatColor” in the same window. Instead of redundant
hilited handlers in the scripts of each of the three push buttons, the script
of window “Colors” can contain the following handler, which sets the title
property of the label to the name property of the push button that was the
original target object of the hilited message:

on hilited theObj
copy the name of theObj to theObjName
set the title of label “whatColor” to theObjName

end hilited

Chapter 10: Scripting Your Application

Messages and Handlers
Even though the window handles the message, not the push button that
received it, the handler can refer to the element that originally received the
message because the direct parameter of the hilited message, theObj,
still contains a reference to the push button that was clicked.

The direct parameter reference is useful because the handler above will be
activated every time an unhandled hilited message reaches window
“Colors.” The script can find the container of theObj and can even find out
what kind of object it is.

Custom Messages with Positional Parameters
The same effect can be achieved by sending and handling messages that you
define. Let us say that the message is to be called showColorOf. Simple
hilited handlers in the scripts of push buttons “Red,” “Blue,” and
“Yellow” could then send showColorOf messages to label “whatColor”
this way:

Then the script of label “whatColor” would need to handle the
showColorOf messages:

The messages you define can pass positional parameters, as needed, within
parentheses. In this example, each button’s hilited handler passes the
name property of theObj, a reference to itself, as the single parameter of
the showColorOf message. The label’s showColorOf handler receives
the parameter in the variable clickedButtonName, and sets the title
property of the label to it.

Since the label is the default object of the showColorOf handler, title
is evaluated as the title property of label “whatColor.”

on hilited theObj
tell label “whatColor” to showColorOf(the name of theObj)

end hilited

on showColorOf(clickedButtonName)
set title to clickedButtonName

end showColorOf
161

162

Chapter 10: Scripting Your Application

Messages and Handlers
Messages with Labeled Parameters
Your handlers can also accept messages with labeled parameters, which are
sent using this statement format:

The script of each push button in our example might therefore contain this
hilited handler:

The script of label “whatColor” handles the showColorOf messages in this
way:

In fact, it is the format of this handler’s first line that requires that messages
be sent to it using the named parameter.

Properties and the “my” Reference
Let us say that a property is declared in the script of an object, and that the
object contains other objects. Then scripts in the containing object can refer
directly to the property, while scripts in the contained objects must use the my
prefix.

For example, if the property stat is declared in the script of a window, it can
be referenced as stat in the window’s script, but the scripts of the window
items contained in that window must refer to the property as my stat.

If stat is instead declared in the script of the application, it can be used in
the application’s script as stat, in the window scripts as my stat, and in
their window items’ scripts as my stat.

A script in an object outside the object in which a property is defined can still
access the property, but it must fully qualify the reference. For example, if the
property stat is defined in window “Statistics”, then a script in another
window can refer to it as stat of window “Statistics”.

tell object reference to message name label name value

on hilited theObj
copy name of theObj to myName
tell label “whatColor” to showColorOf whatName myName

end hilited

on showColorOf whatName theName --note the labeled parameter
set title to theName

end showColorOf

Chapter 10: Scripting Your Application

Messages and Handlers
Declare a property at the top of the script of any container this way:

Note that properties are defined with initial values.

Global Variables
FaceSpan scripts can also use global variables. A global variable must be
declared within each script that uses it. A global variable is known throughout
the project—that is, anywhere it is declared.

Here are some handlers (possibly in different object’s scripts) that use the
same global variable:

Unlike properties, global variables are not initalized in their declarations; you
have to assign values to them somewhere in your scripts.

FaceSpan’s storage item objects are global, can be used anywhere
without declarations, and keep their values from run to run of your projects.

property property name: propertyvalue

on hilited theObj
global gMine
...
set gMine to whatever

end hilited

on MyHandler(something)
global gMine
...
copy gMine & something to whatelse

end MyHandler
163

164

Chapter 10: Scripting Your Application

Controlling Windows
Controlling Windows

Opening Windows
When a FaceSpan application opens a window at run time, the window is
constructed from the window template resource named in the open
window statement. For example:

This statement looks for a window template resource named “User Info,” and
creates a window based on the resource if it is found. The window resource
created in the Window Editor is used as a model for a new window opened at
run time.

Since each window opened in a FaceSpan application is identical to the
window resource as it was saved earlier in the Window Editor, project scripts
must often retrieve and set window and window item properties in order to
save and restore user changes, as discussed next.

Setting Properties in an open window Statement
You’ll often need to adjust some properties of a window as it is opened. To
do this, include a with properties parameter in the open window
statement, in which you supply a record of the property names and values to
be set:

When window “User Info” opens, it will be at position {100, 120} on the
screen.

The record in the example above refers only to the window itself, but open
window statements may also set the properties of window items. Each
window item record of the with properties assignment must begin with
a re property that tells the index, id, or name of the window item to be set:

open window “User Info”

open window “User Info” with properties {position:{100,120}}

{re: window item index, property name: property value, …}

Chapter 10: Scripting Your Application

Controlling Windows
For example, the following open window statement sets the visible and
enabled properties of window item 12 as the window is opened:

You may list as many records as needed in the with properties
parameter. If you omit the re property from a record, FaceSpan assumes that
the properties to be set belong to the window object. The following example
first sets the height and position properties of the window, then the
visible and enabled properties of window item 12:

Note the extra brackets. They are necessary when you refer to more than one
object in the with properties parameter.

Retrieving Properties from a Modal Dialog
You can retrieve values set during user interaction with a modal dialog by
including a returning properties parameter in the open window
statement. You supply “model” records of property names (and place-holder
values, which are ignored) to receive values when the window closes:

In the example above, a record containing the height, position, and
closing item properties of the modal dialog “User Info” will be placed
into the result when the user closes the window. A subsequent script
instruction can extract the value of one of the properties from the result
like this:

The place-holder values were simply the digit 0. Actually, the value of
position is a list of two numbers, and the value of closing item is
returned as a record that describes the item that caused the window to close.
For example, the value of closing item might be returned as:

open window “User Info” with properties {re:12, visible:true, enabled:false}

open window “User Info” with properties ¬
{{height:100, position:{90,70}},{re:12, visible:true, enabled:false}}

open window “User Info” returning properties ¬
{height:0, position:0, closing item:0}

position of the result

{class:push button, bounds:{38, 110, 118, 131}, id:7003,
name:”pshName2”, title:”Button”, auto close:true}
165

166

Chapter 10: Scripting Your Application

Controlling Windows
Thus, if you wish to find the name of the button that closed the window, you
would extract the name this way:

Like the with properties parameter, the returning properties
parameter can also retrieve properties of window items when the window is
closed. As before, include the re property in each record that does not refer
to the window object. The following example retrieves the height and
position properties of the window object, and the visible and
enabled properties of window item 12:

When properties of several items are retrieved in this manner, they are
returned to the result as a list. Individual properties must then be
extracted from the result using the indices of items in the list:

An Alternative Method for Retrieving Properties
The returning parameter, used for multiple assignment in standard
AppleScript, can be used instead of the returning properties
parameter to retrieve properties of windows and window items.

The returning parameter is a “pattern matching” parameter that can be
used either explicitly or implicitly, as in these two equivalent examples of
assignment statements:

Here we use the returning parameter to retrieve window properties from
a modal dialog:

name of closing item of the result

open window “User Info” returning properties ¬
{{height:0, position:0} ,{re:12, visible:0, enabled:0}}

set thePos to position of item 1 of the result
set isVis to visible of item 2 of the result

get the bounds of x returning {l, t, r, b}
set {l, t, r, b} to the bounds of x

open window “untitled” ¬
returning {height:ht, position:{h, v}, closing item:{name:nm}}

Chapter 10: Scripting Your Application

Controlling Windows
The retrieved values are returned directly to the variables that are given
(instead of values) as place holders. The key idea is to mimic the structure of
each property’s value class. In the example, the position property is a list
of two integers, so we mimic that list structure. We need not include every
element, however; the closing item property is a record of six fields, but
we include a reference to only one of them.

Note that the word “properties” is not a part of this example.

Setting and Retrieving Properties in One
Statement

The with properties and returning properties parameters
may be combined in the same open window statement in this manner:

Or you could change the order:

You can use returning instead of returning properties, if you
wish.

Preserving and Restoring the Changes of a
Window

As an application window is closed, its changes property contains a list of
the values of all window and window item properties that might have been
changed by the user during run time. An application can preserve the changes
that have been made within a window by storing the value of the changes
property in a global variable or application property as the window is closed,
and restoring the changes each time the window is opened.

To preserve and restore the changes of a window, we would first define a
script property called, for example, userEdits in the project script of the
application:

open window “Stuff” with properties {list of records} ¬
returning properties {list of records}

open window “Stuff” returning properties {list of records} ¬
with properties {list of records}

property userEdits:{}
167

168

Chapter 10: Scripting Your Application

Controlling Windows
Then create a handler that stores the changes property of the window in the
userEdits property. It could be a close handler as in this example in the
window script:

Once saved in this manner, the changes can be restored to the window using
the with properties parameter of an open window statement in the
project script:

Saving a User-Edited Window
One way to save the state of a window that was edited by the application user
is to save the entire window. Windows can also be saved to their applications
with the save statement:

Saving a window in this manner replaces the window template resource from
which it was created with a resource describing the current state of the
window.

To avoid replacing the original window template resource with the one you
are saving, give the window a different name before saving it. This example
saves a copy of the window template under a new name:

on close theObj
set my userEdits to changes of theObj

continue close theObj--let the window close!
end close

open window “Total Recall” with properties userEdits

on close theObj
save theObj
continue close theObj--let the window close!

end close

on close theObj
copy name of theObj to windowName
set name of theObj to (windowName & “User”)
save theObj
continue close theObj--let the window close!!

end close

Chapter 10: Scripting Your Application

Controlling Menus
Controlling Menus

Application and Private Menus
In FaceSpan applications, a menu can belong to the application as a whole, or
can be one of the private menus of a particular window. A window's private
menus are added to the menu bar when the window is opened or activated,
and removed when the window is closed or otherwise inactivated. Menus
belonging to the application are added to the menu bar when the application
runs and removed when it quits or is stopped.

Handling Chosen Messages
Each time the user chooses a menu item from a menu, a chosen message is
sent to the frontmost document window, so that the window can act upon it.
The chosen message’s parameter will refer to a menu item of an application
menu or of a private menu of the active window. Let us assume that a menu
resembling the “Templates” menu in the picture belongs to a window:

In the window’s script there will be a handler for the chosen message. This
handler will receive all chosen messages from all user interactions with all
menus. The handler must first find out if the chosen message concerns the
window’s own menu, the “Templates” menu:
169

170

Chapter 10: Scripting Your Application

Controlling Menus
This handler intercepts chosen messages sent to the window and calls
appropriate subroutines only when the user chooses items of menu
“Templates,” the only private menu of the window. The continue
statement near the handler's end continues messages concerning other menus
to another chosen handler in the script of the application. The project script
would handle chosen messages from the project’s other menus.

Only document window scripts and the project script can handle the chosen
message, since floating windoids are not sent the message, and the menus are
inactive when a modal dialog is open.

By the way, FaceSpan automatically handles the Cut, Copy, Paste and Clear
commands in the Edit menu.

on chosen theObj
Get useful information about theObj, which is a reference
--to the menu item that the user chose:
copy the name of theObj to theMenuItem
copy the name of the menu of theObj to theMenu

if theMenu is “Template” then
-- Handle messages from menu “Templates”
if theMenuItem is “New…” then
--handle New command here
else if theMenuItem is “Apply…” then
--handle Apply command here
else if theMenuItem is “Edit…” then
--handle Edit command here
else
--handle Delete command here
end if

else
-- Let the application handle messages from the other menus:
continue chosen theObj

end if
end chosen

Chapter 10: Scripting Your Application

Controlling Other Applications
Controlling Other Applications

The primary purpose of AppleScript is to control other applications by way
of scripts. This section tells how FaceSpan promotes that purpose and
supports you in your efforts to control scriptable applications.

Since we are discussing various kinds of applications, we need to distinguish
among them. We will call an application that we wish to control with scripts
a “target application,” and an application we are developing with FaceSpan a
“FaceSpan application,” both of which are distinct from “FaceSpan itself.”

Scriptable Applications
A scriptable application is one that has been specifically written to respond to
AppleScript and to share its data and operations with other applications by
way of scripts. Every application has scriptability in some sense, since all can
be told to open, run, print and quit. But if an application has been written to
respond to AppleScript, you can control the details of its operation as well as
send and receive data to and from it. So, to control an application with
AppleScript and FaceSpan, it must be scriptable.

Terminology
AppleScript provides a general language for describing what you want a
target application to do, but every scriptable application uses special
terminology to describe the its components, operations, and data. This
terminology is stored in a dictionary, which is a component of the application
and accessible to AppleScript and FaceSpan. An example of this application-
specific terminology is FaceSpan’s own terminology—object names such as
checkbox, window and push button, and properties such as hilite,
position and pen color that are unknown in AppleScript proper.

You have to learn the terminology of a scriptable application if you wish to
write scripts to control it. Fortunately, life is simpler than it appears, in this
case, because many applications have similar components and handle similar
data, and so their developers have defined similar terms.

Better still, Apple and a consortium of application developers have defined
standard “suites” of terms. The “text suite,” for example, is a set of standard
terms and meanings to be used by all applications that have text-processing
components. Because developers have been good about adopting these
terminology suites, you can apply what you learn about one target application
to another of the same category.
171

172

Chapter 10: Scripting Your Application

Controlling Other Applications
Scripting Support
While you create scripts to control a target application, FaceSpan supports
you in several ways. First, FaceSpan’s Dictionary Windoid is a ready
reference to the terminology of the scriptable application. Second, you can
use the Message Windoid to try out commands or entire scripts before you put
them into your project. Third, the structure of your project lets you partition
your scripts in convenient ways. For example, different buttons in your
project’s windows can tell an application to do different things.

Keeping Ideas in Order
When you develop a FaceSpan application to control a target application, you
are in triple jeopardy: you use AppleScript terminology, FaceSpan
terminology and the target application’s terminology. Here, as it might appear
in a Script Editor window, is a sample script that illustrates the problem:

To keep the terminology straight, note that:

➤ AppleScript is the overall language that provides structure to your scripts.
The keywords (usually bold in script listings), connecting words, a few verbs
like “set” and “copy” and the fundamental data types—lists, integers, records,
strings—are provided by AppleScript. All the non-bold, non-underlined
words, numbers and symbols in the example script are typical of any script.

➤ FaceSpan’s terminology refers mainly to the set of interface elements
behind which you put scripts. Most of the nouns and verbs in scripts will be
unique to FaceSpan or common to FaceSpan and the target application. The
underlined word in the last line of this example is FaceSpan terminology.

➤ A target application’s own terminology alone controls that application. All
the underlined words, except the last, are FileMaker terminology.

tell application “FileMaker”
--Get a list of all the names from the database.
set numRecords to Count of Record of Layout 1
set nameList to {}
repeat with i from 1 to numRecords

--Get each name, save in list:
set LastName to (cellValue of Cell “Last Name” of Record i)
copy nameList & {LastName} to nameList

end repeat
end tell
set listbox “lstNames” to nameList

Chapter 10: Scripting Your Application

Controlling Other Applications
By the way, you can control the formatting of scripts in your applications; use
the AppleScript Formatting command in the Script menu.

See “An Approach to Application Development,” later in this chapter, for a
development strategy that helps you keep control of terminology.

Scripting Target Applications
The purpose of AppleScript, and a major purpose of FaceSpan, is to script
other applications, especially third-party applications. (Here we use “script an
application” to mean “write scripts to control an application.”)

Guidelines
As described above, a tell statement is used to direct a script at the target
application you wish to control. Here is a simple example:

When AppleScript attempts to compile or decompile this script, it looks for
the target application called “Excel” so that it can open the application’s
terminology dictionary.

If you had just entered the text of this script, you would be asked to locate
“Excel.” AppleScript uses the target application’s dictionary to determine
how each term gets translated into its compiled form. If you later make
changes to the script (other than the name of the application), AppleScript
remembers where “Excel” is, and so does not ask.

tell application “Excel”
activate
--Set up the row-column range string:
copy “R1C1:R” & (count of theInfo) & “C2” to chartRange
--Now open a spreadsheet and insert the data (assumed to be
--a list of 2-item lists in theInfo):
make Document
set Range chartRange of first Document to theInfo
set selection of first Document to Range chartRange
--Set chart parameters, then make the chart:
set charttitle to “Sales”
set charttype to bar
set chartlegend to false
make Chart

end tell
173

174

Chapter 10: Scripting Your Application

Controlling Other Applications
On the other hand, if your client tries to open a project with this script
compiled into it (on a different Macintosh, of course), AppleScript will ask
your client to locate “Excel” again—this time because it needs to find out how
to decompile the compiled form of the script back into readable text.

One way to avoid the problem is to make sure that the distributed application
is put into a folder along with aliases to the target applications. However,
these aliases must have the same names as the target applications had when
the application was last compiled.

No variables for targets
It is important to understand why the following example will not work. It asks
for the name of a target application to control, then tries to send commands to
it:

The application must be known when the script is compiled; otherwise,
AppleScript cannot know what the non-AppleScript, non-FaceSpan terms
mean.

Similarly, if you try to open a script for editing, and you respond to
AppleScript’s request for the target application with the wrong application,
the script will be displayed, but it might be full of cryptic sequences like
«event Rtsj» and «class Tmqz». These are the compiled forms of terms for
which AppleScript could not find terms in the dictionary of the target
application you gave it.

Organizing your scripts
AppleScript tries to find a terminology dictionary each time it encounters a
tell statement for an additional target application, or when it encounters a
tell statement in the script of another FaceSpan object. This becomes a
nuisance only when you place scripts for the target application throughout

--Get the name of an application:
set theName to (choose application with prompt “Open an app:”) as string
--Tell it to do some work:
tell application theName

activate
--and so on
make Chart --for example

end tell

Chapter 10: Scripting Your Application

Controlling Other Applications
your project. When you distribute such an application to your clients, each
client will be asked several times for the same target application. This can be
confusing, as well as a nuisance.

The solution to the problem rests upon an appropriate organization of your
FaceSpan project: put all references to a target application in the script of just
one FaceSpan object.

Perhaps the best solution is to use a script object to hold the subroutines
(handlers) and all the variables (properties) that those subroutines need:

script SpreadSheet
--Operations on a spreadsheet application--here we use Excel.
--Put properties used only in this script object here.

on doLaunch()
tell application “Excel”
 --Put commands to start the application here.
end tell

end dolaunch

on doOpen(fileName)
tell application “Excel”
 --Put commands to open a file here.
end tell

end doOpen

on doGetData(theData)
tell application “Excel”
 --Put commands to get the data here.
end tell

end doGetData

--...etc.
end script
175

176

Chapter 10: Scripting Your Application

Controlling Other Applications
The script object would be in the project script if several windows must call
its handlers, or in a window script otherwise. A typical call would look like
this:

Another solution is to try to use just one tell statement for each target
application. This can be done by writing a single subroutine to handle all
commands to the target application. Here is an outline for such a subroutine:

set fileName to ((choose file of type “FMPR”) as string) --get the data file

tell my SpreadSheet to doOpen(fileName) --call a spreadsheet subroutine to
--tell Excel to open the file

--Operation “selectors” to use when calling the Spreadsheet subroutine:
property doLaunch: 1 --launch the database or spreadsheet app
property doOpen: 2 --open the database or spreadsheet file
property doGetData: 3 --get data from user's database file
...etc.
on SpreadSheet(theOp, theInfo)

--Operations on a spreadsheet application--here we use Excel.
tell application “Excel”

--Use theOp to select the commands to execute:
if theOp is doLaunch then
 --Put commands to start the application here.
 --theInfo might simply be ignored.

else if theOp is doOpen then
 --Put commands to open a file here.
 --theInfo could be the name of the file.

else if theOp is doGetData then
 --Put commands to get the data here.
 --theInfo might be a list of data values.

--...etc.

end if
end tell

end SpreadSheet

Chapter 10: Scripting Your Application

Controlling Other Applications
This subroutine would be located centrally, most likely in the project script.
A typical call might look like this:

Points of view
You can script the target application from one of two points of view. One
view is to consider the target application as the central concern. Your
FaceSpan application would then be subordinate to it, perhaps acting as a
palette or control panel or tool bar. A FaceSpan application built from this
point of view is likely to take up little screen area, and its labeling will be
derived from that of the target application.

The other view is to make the FaceSpan application the center of attention,
using the target application simply as a tool for adding functionality to the
FaceSpan application. In this case, the interface will be what makes the most
sense, not what is forced upon you by the target application. In particular, you
probably will want to hide the target application’s windows so that they do
not distract attention from your interface.

Scripting the Finder
The Finder, the application that displays the desktop and controls all its
operations, is a scriptable application, so it can be the target of a FaceSpan
application. Its terminology dictionary is in a file called “Finder Scripting
Extension” in the Extensions folder of the System Folder. (The Finder’s
dictionary is always available in the Dictionary Windoid.)

Here is a very simple sample script:

The scriptable Finder is also recordable. You can open a FaceSpan Script
Editor window, click the Record button, then go to the desktop and go
through the steps you want to get done; the script will write itself.

set fileName to ((choose file of type “FMPR”) as string) --get the data file

SpreadSheet(doOpen, fileName) --call a spreadsheet subroutine to
--tell Excel to open the file

tell application “Finder”
activate
close every window

end tell
177

178

Chapter 10: Scripting Your Application

Controlling Other Applications
Scripting Other FaceSpan Applications
The easiest kind of application you can script is one developed with
FaceSpan. There are two reasons for this. The first is that applications
developed with FaceSpan understand all the FaceSpan terminology, so any
command you can use within a FaceSpan application can be sent to a
FaceSpan application. For example, application “TestApp” might have this
statement in one of its scripts:

Because there is a textbox “txtTitle” and a window “Flashy,” another
application can script “TestApp” the same way:

The other reason that a FaceSpan application can be easy to script is that you
can define your own handlers or other subroutines within that application. For
example, you could put the statement of the previous example into a
subroutine called “SetPen” in the project script of “TestApp”:

Then another application can script “TestApp” more briefly, this way:

In other words, you have the opportunity to make your FaceSpan applications
as easily scriptable as you wish.

Scripting FaceSpan Itself
FaceSpan itself can be the target of your scripting efforts. FaceSpan is, of
course, an application development environment, so your efforts will be
devoted to controlling how applications are built.

set the pen color of textbox “txtTitle” of window “Flashy” to black

tell application “TestApp”
set the pen color of textbox “txtTitle” of window “Flashy” to black

end tell

on SetPen()
set the pen color of textbox “txtTitle” of window “Flashy” to black

end SetPen

tell application “TestApp” to SetPen()

Chapter 10: Scripting Your Application

Controlling Other Applications
There are two ways in which you might script FaceSpan itself. In the first
case, you can enter, edit and execute scripts in the log area of the expanded
Message Windoid. You might use simple commands to set properties that
cannot be set another way, but you might also write repeat loops or more
complex scripts to create or set the properties of a group of window items.

The other way to script FaceSpan itself is to create FaceSpan applications that
serve as additional tool palettes. For example, let’s say that FaceSpan is open,
that there is a window open for editing, and that a window item is selected.
Then an application can refer directly to the selected item:

Your scripts can find out how many items there are, get and set any
property of any item or of the window itself, and—using the make
command—create new window items in the window. So it is possible, for
example, to create a palette that has a button labeled “Dialog” which, when
pressed, turns the current window into a standard modal dialog by resizing it
and making the button, text and icon items.

tell application “FaceSpan”
set theSel to the selection of window 1 --get list of selected items
set theItem to item 1 of theSel --first (or only) item selected in window
set the pen color of window item theItem to newColor
--and so on

end tell
179

180

Chapter 10: Scripting Your Application

Using Scripting Additions
Using Scripting Additions

AppleScript Language Extensions
Scripting additions are files that provide additional commands you can use in
scripts. They extend the AppleScript language, giving it new features, and
new terminology for those features. There are, for example, scripting
additions to sort lists alphabetically, to play sounds and to access data stored
in popular database systems.

Because they are written in Pascal, C or assembly language, scripting
additions can execute complex algorithms faster than AppleScript or other
scripting languages, and they can access external resources, such as
databases, in ways not directly available to scripts.

Scripting additions have dictionaries that you can view using FaceSpan’s
Dictionary Windoid. The dictionary gives the syntax, terminology, and
parameter classes for a scripting addition.

A scripting addition is often called an “OSAX,” which stands for Open
Scripting Architecture eXternal commands.

Writing Scripting Additions
Scripting additions are written in Pascal, C, or assembly language. They
usually are distributed as extension files that must be dragged into the
Scripting Additions folder (located in the Extensions folder of the System
Folder).

Using Scripting Additions in Applications
If it becomes necessary or useful to employ scripting additions in your
applications, you need to think about distribution. You will find that
FaceSpan makes it easy: you can include copies of scripting additions right in
your project. People who use your applications will not even have to know
that scripting additions are used. To include a copy of a scripting addition in
a project:

1 Select the Forms, etc. View radio button in the Project Window.

2 Click the Import button.

The standard Open dialog appears.

3 Locate and select the scripting addition, then click the Open button.

Chapter 10: Scripting Your Application

Using Scripting Additions
A copy of the scripting addition is brought into the project, and its name is
listed among the other form names.

Please note, however, that while you are developing the project, the original
scripting addition must remain in the Scripting Additions folder, where the
AppleScript compiler expects to find it.

It also is important to know that a single scripting addition file might contain
several scripting additions. Use FaceSpan’s Dictionary Windoid to be sure
that the names do not conflict with the names in other scripting additions that
you import, or with terms used in your application.

Copyrights
Remember that many scripting additions are not yours to distribute. Others
may be distributed with permission, some require that you pay a shareware
fee, and so on. Do not include a scripting addition in a project unless you
know that it is permissible to do so. Even without a copyright attribution, the
author of a scripting addition still holds the copyright.
181

182

Chapter 10: Scripting Your Application

An Approach to Application Development
An Approach to Application Development

This section offers suggestions about how to start a project, how to structure
it for best results and how to finish it.

Incremental Development
The FaceSpan development and testing environment is so flexible and
immediately responsive that you can develop applications “incrementally”—
that is, you can design, develop or test the application one feature at a time.
This is an especially handy approach to testing, since you must be sure one
script works before you test another that depends upon it. Incremental
development is similarly useful for interfaces, since they are tightly
integrated with the scripts.

Interface First
There are several reasons why you should develop the interface of an
application as the first step:

➤ Creating the interface first makes you consider all the information that you
want to show to the application’s user.

➤ Controlling the interface might require more scripting than controlling the
target application (the application that your FaceSpan application is to
control, if any).

➤ The interface often is most critical to a project’s success, and often is the
feature upon which projects are judged.

➤ Since the interface is the “public” part of the project, it is the part most
likely to be changed to satisfy others.

A good way to avoid confusion between the terminology of FaceSpan and the
terminology of the target application is to write all the scripts necessary to
control FaceSpan’s interface elements before you write scripts to control the
target application. To script the interface as thoroughly as possible before
scripting the target application, you might have to make up example data that
ultimately will come from the target application.

Finally, write the scripts to control the target application, and to pass
information back and forth between the interface and the target application.

Chapter 10: Scripting Your Application

An Approach to Application Development
Scripting and Code Structure
There are two general ways to structure a FaceSpan project. One is to put all
the important routines into the project’s script, then have the interface
elements call those routines to get the work done; this would be called a
“centralized” scheme. The other strategy is to put the routines right into the
scripts of the interface elements that call them; this would be a
“decentralized” scheme.

In fact, a good way to organize a project is to distribute the routines that
control the interface elements, and to centralize the routines that control the
target application. Interface-control scripts are thus kept close to the objects
they control, while the closely interrelated routines that control the target
application are found in one area, where they can be viewed and maintained
at the same time.

This organization then requires that you include both centralized and
decentralized routines to exchange data with some of the interface elements.
For example, a textbox will have to call a central routine to get what it needs
to display, and a central routine will call a textbox’s routine to get text that
was typed into it.

Refinement
There always is more work to do after an application is “finished”—that is,
after it looks good and behaves properly. Since it is likely that you will be
maintaining your project for some time, you will want to make maintenance
as easy as you can.

The first thing to do is to delete all the unused project resources that
accumulated during development, such as extra windows, menus, artwork
and forms.

In your scripts, remove unused properties and variables and the statements
that you commented out when you changed your code.

Make another pass through all the scripts and make sure that you use the same
names for the same entities throughout. When this is done, see if your
handlers and subroutines can share data by passing it as parameters, rather
than by putting it into global variables that all can access.

Be sure that you have commented your scripts adequately and correctly.
Comments really should be written before or during scripting. They should
include descriptions of the assumptions you made about the data, decisions
183

184

Chapter 10: Scripting Your Application

An Approach to Application Development
you made in the design, and the meanings of the data structures. (Comments
in AppleScript begin with two dashes, “--”, and continue to the end of the
line.)

Finally, do not forget to set up the “About...” dialog to identify yourself and
your program and to display your copyright.

Part III:
FaceSpan Object and
Language Reference

Chapter 11
Applications

Chapter 12
Windows

Chapter 13
Window Items

Chapter 14
Menus and Menu Items

Chapter 15
Special Artwork and Text Style
Classes

Chapter 16
Storage Items

Chapter 11:

Applications
Contents:

Applications 189

Application Properties 190

Application Command and Event Messages 201

Chapter 11: Applications

Applications
Applications

The application object is the overall container or parent of all the objects in
your application. It has properties that pertain to the overall behavior of the
application clipboard, mouse position, cursor, the positions of
the modifier keys, and so on.

There are several command and event messages sent specifically to
application objects, such as open (for drop-launching), quit run, and
others.

Since the application contains all other objects, it can intercept and handle
messages sent by commands and interface events to any object. It might
handle such messages if an object does not handle them, or if the object
continues them.

Applications can be launched from the desktop when double-clicked. They
can also be made to “drop-launch,” which means that they run when
document or folder icons are dropped onto their desktop icons. An application
is made to drop-launch simply by including a handler for the open message
in the project script.

Reference Forms
There are two ways to refer to the application object in a script:

current application
application “application name”

The cursor property of the current application would, for example, be
referenced as:

Most application properties are unique, however, so they can be referenced
without qualification—unless you are referring to properties of another
application, one that is running at the same time. Only the focus, idle
delay, name and script properties must be fully qualified to avoid
ambiguity.

Application icon “Droppable”
Application icon
189

190

Chapter 11: Applications

Application Properties
Application Properties

clipboard

The data contained on the Clipboard.

Value Class

any (see notes)

Examples

Notes

➤ The value class of the clipboard property depends upon the class of the
information it contains. This can be string, list, record,
integer or real.

➤ To find the value class of the clipboard, it must be copied to a variable,
then the variable tested for the value class.

command down

Is the Command key pressed?

Value Class

boolean

Examples

copy clipboard to theClip
if class of theClip is string then

display dialog “It’s a string.”
end if

if command down then
DoOneThing(x)

else
DoAnother(x)

end if

Chapter 11: Applications

Application Properties
Note

➤ Command down is a read-only property.

control down

Is the Control key pressed?

Value Class

boolean

Examples

Note

➤ Control down is a read-only property.

cursor

The identity of a cursor resource.

Value Class

integer cursor (“CURS”) resource id number

 string cursor (“CURS”) resource name

 constant standard / none

if control down then
DoOneThing(x)

else
DoAnother(x)

end if
191

192

Chapter 11: Applications

Application Properties
Examples

Notes

➤ Cursor can represent the name or id of a cursor that has been imported
into the project from the Artwork View of the Project Window.

➤ Cursor can be set to the constant standard to restore it to its standard
shape. That shape depends upon the context.

➤ If cursor is set to none, it becomes invisible until moved.

➤ You can get or set the cursor property; this lets you save and restore the
current cursor.

focus

The window item that is receiving keystrokes (or would, if the application
were active).

Value Class

reference

Examples

Notes

➤ The focus of an application remains set even while the application is
suspended.

➤ The focus of an application is a read-only property.

 --Get the current cursor:

set saveCursor to the cursor
--Set the cursor to a custom shape:
set the cursor to “Special”
...etc.
--Restore the cursor:
set the cursor to saveCursor

set theObj to focus of application “Data Viewer”
copy window of focus of application “My Editor” to theFocalWindow

Chapter 11: Applications

Application Properties
frontmost

Is the application active?

Value Class

 boolean

Examples

Note

➤ Frontmost of an application is a read-only property.

heap space

Reports the amount of free memory available to the application.

Value Class

integer

Example

Notes

➤ Heap space and stack space help you to better monitor and respond
to low-memory situations.

idle delay

The frequency with which the application receives idle messages.

Value Class

 integer

Examples

copy frontmost of application “Document Shredder” to isAtFront
if frontmost of application “MyScriptEditor” then open window “Debugger”

set label “lblheapValue” to heap space

copy idle delay of application “Simulator” to saveDelay
set idle delay of application “Simulator” to 1
193

194

Chapter 11: Applications

Application Properties
Notes

➤ The idle delay is given in seconds; the default is 2 seconds.

➤ If a window and its application have different idle delay values, the
idle delay of the window is ignored unless it is greater than that of the
application.

➤ An idle delay of 0 allows the application to receive idle messages as
often as possible.

interruptible

Can Command-period cancel scripts?

Value Class

boolean

Examples

Note

➤ Interruptible is a read-only property.

mouse down

Is the mouse button pressed?

Value Class

boolean

Examples

Note

➤ Mouse down is a read-only property.

if interruptible then
set textbox “txtMessage” to “Press Command-period to cancel.”

end if

if mouse down then
set the fill color of box “boxButton” to black

else
set the fill color of box “boxButton” to white

Chapter 11: Applications

Application Properties
mouse position

The position of the mouse in global coordinates.

Value Class

Examples

Notes

➤ The position {0, 0} is the upper-left corner of the main screen.

➤ Mouse position is a read-only property.

name

The name of the application.

Value Class

string

Examples

Note

➤ Name is a read-only property.

 point {horizontalOffset, verticalOffset}

set {mouseH, mouseV} to mouse position
set {wdwLeft, wdwTop, wdwRight, wdwBottom} to bounds of my window
--Find and use the local (window) coordinates of the mouse:
set localH to mouseH - wdwLeft
set localV to mouseV - wdwTop
set the position of box “boxMover” to {localH, localV}

copy the name of the application of theObj to appName
copy the name of the current application to myAppName
195

196

Chapter 11: Applications

Application Properties
option down

Is the Option key pressed?

Value Class

boolean

Examples

Note

➤ Option down is a read-only property.

screen bounds

The bounding rectangles of all attached displays.

Value Class

a list of bounding rectangles

Examples

Notes

➤ The first rectangle in screen bounds is the bounds of the main screen.

➤ Screen bounds is a read-only property.

if option down then
DoOneThing(x)

else
DoAnother(x)

end if

copy the screen bounds to boundsList
--Get the coordinates of the main screen:
copy item 1 of boundsList to {myLeft, myTop, myRight, myBottom}

Chapter 11: Applications

Application Properties
screen depths

Bits per pixel of all attached displays.

Value Class

a list of small integer

Examples

Notes

➤ The first number in screen depths is the color depth of the main
screen.

➤ Screen depths is a read-only property.

script

The compiled script of the application.

Value Class

script

Examples

Notes

➤ When a string containing a script is assigned to the script property, it is
automatically compiled; you must handle (with a try statement) any error
encountered during compilation.

➤ Coercing the script property to string or text decompiles it.

set theDepths to screen depths
--Get the depth of the main screen:
copy item 1 of theDepths to mainDepth

set the script of application “Test” to contents of textbox “txtTester”
set the contents of textbox “txtViewer” to (script of current application)
197

198

Chapter 11: Applications

Application Properties
shift down

Is the shift key pressed?

Value Class

boolean

Examples

Note

➤ Shift down is a read-only property.

stack space

Reports the amount of free memory available to the application.

Value Class

integer

Example

Notes

➤ Heap space and stack space help you to better monitor and respond to low-
memory situations.

if shift down then
DoOneThing(x)

else
DoAnother(x)

set label “lblStackValue” to stack space

Chapter 11: Applications

Application Properties
ticks

The number of ticks (60ths of a second) since the machine was last turned on.
This can be helpful in implementing timed behaviors; the difference between
the values returned by two references to the ticks property is a precise
measure of elapsed time.

Value Class

integer

Example

version

The version of FaceSpan that was used to create the application.

Value Class

string

Examples

property timedelay : 3600 -- this property = 1 minute. ticks are counted in
60th's of a second.
on run

repeat
set startticks to ticks
repeat
 if (ticks) > startticks + timedelay then
 exit repeat
 end if
end repeat
beep 5 -- this will beep 5 times every minute with the value 3600 for
the timedelay variable

end

copy version of application “Article Accelerator” to theVers
199

200

Chapter 11: Applications

Application Properties
Notes

➤ The version property is given as a string, not a number, since it might
have two decimal points.

➤ Version is a read-only property.

Chapter 11: Applications

Application Command and Event Messages
Application Command and Event Messages

The application object is the overall container or parent of all other objects; it
contains all windows, which contain all window items. Thus, the project
script (the script of the application object) can intercept and handle messages
sent by commands and events to any object. This could happen if the object
does not handle the messages itself, or if the object continues the messages.

See the window and window item references for command and event
messages sent specifically to those objects.

Listed here are a few additional command and event messages that are sent
directly to applications. The listing tells the source of the message—either a
command issued from a script, or an event from the system or from user
interaction.

Any message sent by an event can also be sent by a command; the name of
the message is the name of the command.

click as user

Lets you script “click” the mouse anywhere on the screen or within a
specified window. You can even make it click on a button with a particular
name.

Example

Note

➤ This command lets your scripts mimic the actions of a real user within other
applications. Using this command, you can automate the operations of
applications that have no built-in support for scripting. See also type as user
on page 207.

click as user on button titled “OK”
201

202

Chapter 11: Applications

Application Command and Event Messages
do script

Command to execute a script.

Parameters

Examples

Note

➤ The do script command is in FaceSpan mainly for completeness, since
most scriptable applications accept it.

idle

Idle event messages sent by the system.

Parameters

Notes

➤ Idle events are received from the system once every two seconds (or at
the interval specified by the idle delay property) when no other events
are occurring.

➤ If a window and its application have different idle delay values, the
idle delay of the window is ignored unless it is greater than that of the
application.

➤ A window can continue the idle message to its application; hence, the
direct parameter (reference) might not be the application itself.

➤ The application will not send idle messages if a window is not open. You
can create a window and make it invisible or move it off the screen.

(direct) string a script

(direct) reference object to which idle was sent

do script “repeat with i in 1 to 5" & return ¬
& “set enabled of checkbox i of window 1 to false” ¬

& return & “end repeat”
tell application “FileMaker” to do script fmScript

Chapter 11: Applications

Application Command and Event Messages
make

Command to create a new object.

Parameters

 [with record description of object properties]

Examples

Notes

➤ A new window can be made at any time, from any script; this does not
create a new window template. If a script saves the window with the save
command, a new template will be saved into the application; it can later be
edited in edit mode.

➤ A window cannot make a new window item within itself, nor can a window
item make a new item within its own window.

➤ When making a window item, the at parameter, if used, specifies the
position of the new item in the layering; beginning means the bottom
layer, while end means the top layer.

➤ When making a window item, the with properties parameter is
required, and must include the name and bounds properties.

(direct) class class of intended item

at integer position in container

beginning or end

of reference intended container

make menu item with properties {name:”Overview”, mark:”•”} ¬
at beginning of menu “Views”

make textbox with properties {class:textbox, ¬
bounds:{0,0,100,100}, contents:”Voila!”, ¬
editable:true, position:{99,8}) at end of window 1

make new window with properties ¬
{{bounds:{77, 101, 475, 301}, form:modal dialog, ¬
titled:true, zoomable:false, private menus:{}, ¬
name:”Bob”}, {class:push button, ¬
bounds:{195, 151, 275, 171}, name:”cancel”, ¬
203

204

Chapter 11: Applications

Application Command and Event Messages
➤ New listbox items can be made in any listbox.

➤ New menu items can be made in any menu currently displayed; the menu
template is not changed.

➤ New menu items can be made in any popup; some menu item properties do
not apply to menu items in popups.

➤ New storage items can be made at any time from any script; they are
persistent from run to run.

open

Drop-launch event message from the system.

Parameters

Example

Notes

➤ An application is drop-launched by dropping desktop icons onto the
application’s icon.

➤ The open message takes a single parameter whose value is a list of aliases.
These are the aliases of all the items whose icons were dropped on the
application’s icon. You can convert the aliases to path names by using as
string.

➤ The open message is sent even if the application is running when the items
are dropped.

(direct) list of alias documents and folders

dropped on the icon

on open theFiles
repeat with i from 1 to count of theFiles

copy item i of theFiles to nextFile
--Do something with this file alias:
set itsPath to (nextFile as string)
ProcessFile(itsPath)

end repeat
end open

Chapter 11: Applications

Application Command and Event Messages
➤ An open message is not sent when the application is opened by double-
clicking its icon or by a tell statement in a script. See the discussion of the
run event message.

➤ The open message is not sent when a window opens; instead, a prepare
message is sent. Use a prepare handler to adjust the window or its window
items as the window opens.

print / print setup

Provides control over paper margins and printing dialogs.

Example

Notes

➤ The first command in the example above would create 1-inch margins and
present the user with setup and job dialogs.

➤ The second command in the example above would print window 1 by
expanding its size (and its items according to their growth properties) to
conform to the specified paper dimensions (72 points from each edge, in this
case).

➤ Items without scrollbars appear on every page. Items with scrollbars are
automatically paged until their contents run out. For convenience, these
paged items do not print either the images of their scrollbars nor their
enclosing frames.

quit

Command to quit execution.

Parameters

(none)

print setup paper margins {72,72,72,72} with setup dialog and job dialog

print window 1
205

206

Chapter 11: Applications

Application Command and Event Messages
Example

Note

➤ As shown in the example, a quit message that is handled must be
continued, or the application will not quit.

run

Event message, from the system, to run the application.

Parameters

Examples

 (direct) reference the application

on quit
try

display dialog “Are you sure it’s OK to quit now?”
-- (user OK’d)
continue quit

on error
-- (user canceled)

end try
end quit

on run theApp
--Put “loose” executable statements in here.

end run

tell application “Example”
--Open the application and send a run message:
activate
...etc.

end tell

tell application “Example”
--Open, but do not send a run message:
launch
...etc.

end tell

Chapter 11: Applications

Application Command and Event Messages
Notes

➤ The run message is sent when the user double-clicks the application icon
to open the application.

➤ The run message is not sent when the user drop-launches the application.
See the discussion of the open event message.

➤ The run message can be sent (or not) when an application is opened by a
tell statement in a script, as shown in the examples.

➤ All the “loose” statements in the project script are treated as a default run
handler, where “loose” means they are not explicitly contained in a handler
or subroutine.

➤ You can put an actual run handler into the project script; the application
can have either a default run handler or an actual run handler, but not both.

save

Command to save the current configuration of a window.

Parameters

 Examples

Notes

➤ If you save a window, close and reopen it, it will reopen in the
configuration (including the position) in which it was saved.

➤ The window’s saved configuration persists from one execution of the
application to the next.

type as user

This command lets you type a sequence of characters into a text area of the
target applications. It even simulates holding down the various modifier keys,
such as the Command or Option key.

(direct) reference the window to save

save window “Preferences”
207

208

Chapter 11: Applications

Application Command and Event Messages
Example

Note

➤ This command lets your scripts mimic the actions of a real user within other
applications. Using this command, you can automate the operations of
applications that have no built-in support for scripting. See also click as user
on page 201.

type as user “p” with command down

Chapter 12:

Windows
Contents:

Windows 211

Properties of windows 213

Window Command and Event Messages 237

Special Considerations 252

Chapter 12: Windows

Windows
Windows

A window in a running application is composed of a window object—which
forms its foundation—and window items, such as buttons, icons, and
textboxes. Windows templates constructed with FaceSpan’s Window Editor
and saved with a project’s resources are used as models for the windows
opened while the application is running.

This chapter describes the three classes of windows, their reference forms and
properties, as well as the standard command and event messages they can
handle. For detailed information about window items, refer to Chapter 13:
“Window Items”.

Classes of Windows

Like the window items they contain, window objects are defined by
properties. They can be scripted to respond to messages received from the
user interface and from the scripts of other objects.

Each window object can be set to any one of the three classes of windows:
document window, modal dialog, and floating windoid. Each class looks and
behaves somewhat differently at run time.

Document windows are generally used to display data that is editable by the
user. A document window can remain open in a suspended state while other
windows or applications are active, and can then be reactivated by clicking.
It can contain a title bar with which it can be dragged around the screen. If a
standard window contains a title bar, it may also contain a close box, a zoom
box, a resize box, or any combination of these.

+

211

212

Chapter 12: Windows

Windows
Modal dialogs are typically used to obtain information from, and to give
instructions to, application users so that processes can be concluded. Modal
dialogs cannot be suspended or covered by documents or windoids—only by
other modal dialogs.

Once a modal dialog has opened on screen, the user must dismiss it before
activating another window in the same project or application.

A modal dialog is surrounded by a four-pixel-thick frame. It can have a title
bar, which makes it movable. A modal dialog cannot contain a close box,
zoom box or resize box; it is usually closed using a button.

Floating windoids often are used to display control objects and utility
information. On the desktop, windoids cannot be covered by documents; only
by modal dialogs and other windoids. When an application is suspended, its
windoids become invisible until the parent application is reactivated. Each
floating windoid has a black-and-white drag bar at its top. The drag bar
cannot be removed, but it may contain an optional title, close box, and zoom
box. A windoid can contain a resize box.

Reference Forms

Windows can be referenced by name, by index, by id number or as the
window of a given window item, any of which can be the value of a variable:

➤window “Preferences”

➤window 3

➤window id 20973248

➤window of theObj

➤window of menu “Sales”

Note that the id number is not fixed; it may differ each time the window is
opened.

Chapter 12: Windows

Properties of windows
Properties of windows

bounds

The global coordinates of the content area of the window.

Value Class

Examples

Note

➤ The bounds of a window are expressed as offsets, in pixels, from the top-
left corner of the main screen. That corner is at position {0, 0}.

changes

The changeable properties of the window and its window items.

Value Class

list of integer bounding rectangle {left, top, right, bottom}

list of records {{propertyName:value,…},

{re:7001,propertyName:value,…},

{re:7002},

{re:7003,propertyName:value,…},…}

copy the bounds of window 1 to {wLeft, wTop, wRight, wBottom}
--Make the window twice as tall:
set wBottom to wBottom + (wBottom-wTop)
copy {wLeft, wTop, wRight, wBottom} to the bounds of window 1
213

214

Chapter 12: Windows

Properties of windows
Examples

Notes

➤ The changes property is a list of records; each record gives the
identification of an object and its user-changeable properties.

➤ The first record returned contains the changes to the window itself. Each
subsequent record refers to a window item, with the re property indicating
the id of the window item.

➤ Changes is not a complete list of properties (compare the description
property), but rather a list of only the user-editable properties of the window
and of its window items.

➤ All window items of the window are represented in the list; the records for
those without changeable properties contain only the re property.

➤ When you close a modal dialog whose open window statement did not
include the returning parameter, changes is placed by default into the
result.

class

The object class of the window.

Value Class

Examples

constant document / dialog / windoid

set allChanges to changes of window “Source Document”
--Extract one of the changed properties:
set wdwChanges to item 1 of allChanges
set wdwBounds to bounds of wdwChanges
--Reopen the window with the original changes:
open window “Source Document” with properties wdwChanges

if class of anObj is dialog then close window anObj

Chapter 12: Windows

Properties of windows
Notes

➤ See the form property; it is the property that establishes the class and the
basic appearance of the window.

➤ See also the modal and floating properties.

➤ Class is a read-only property; it cannot be set.

closeable

Does the window have a close box for closing it?

Value Class

boolean

Examples

Notes

➤ Closeable is always false if titled of the window is false or if
the form of the window is modal dialog.

closing item

Indicates the window item that caused a window to be closed.

Value Class

record

constant close box or none

set canBeClosed to the closeable of window whichWindow
215

216

Chapter 12: Windows

Properties of windows
Examples

Notes

➤ The closing item of a currently open window is none.

➤ If a modal dialog is closed by the close command without a per
parameter (which normally specifies the closing item), the closing
item defaults to the constant close box.

➤ If the auto close property of a button is true and that button is used
to close the window, closing item contains a description of the button.
(For more information, see the description property common to all
window items.)

➤ Closing item normally is used by the returning parameter of the
open window statement that opens a modal dialog.

➤ See the discussion of the close message.

➤ Closing item is a read-only property.

contents

The value of the changes property of the window.

Value Class

list of record

open window “My Dialog” returning {closing item:closer}
--Execution does not continue here until the modal dialog is closed:
if closer is close box then

display dialog “closed by a close command without a PER parameter.”
else if closer is none then

--This is not possible with a modal dialog.
else

display dialog “closed per “ & name of closer & “.”
end if

open window “My Document” returning {closing item:closer}
--Execution continues while the window is open:
if closer is none then

--This is the only possible value with a document or floating windoid.
end if

Chapter 12: Windows

Properties of windows
Examples

Note

➤ The value of the contents property of a window is the same as the value
of the changes property. That value is also returned by the get data
command.

description

Complete record of the names and values of the properties of the window and
its window items.

Value Class

Examples

Notes

➤ The first record in the list describes the window itself. Each subsequent
record refers to a window item, with the re property indicating the id of the
window item.

➤Compare the changes property.

➤ Description is a read-only property.

list of records {{propertyName:value,…},

{re:7001,propertyName:value,…},

{re:7002,propertyName:value,…},…}

copy the contents of window “Wow” to wdwContents

copy the description of window “Untitled” to tempDescription
--Get the description of the window only:
set wdwDescription to item 1 of tempDescription
217

218

Chapter 12: Windows

Properties of windows
droppable

Can the window have things dropped on it?

Value Class

boolean

Examples

Notes

➤ For the droppable property to be true, the system software must
support drag and drop.

enabled

Is the window enabled?

Value Class

boolean

Examples

Notes

➤ The enabled property is true if the window is active (normal in
appearance and responsive to user input) and false if it is inactive (dimmed
and unresponsive to user input).

➤ Enabled is a read-only property.

if the droppable of window “My Editor” then
display dialog “You can use drag & drop.” buttons {“OK”}

end if

copy the enabled of myWindow to itsEditable

Chapter 12: Windows

Properties of windows
fill color

The color of the window’s background.

Value Class

Examples

Notes

➤ The fill color is always returned as an RGB value, a list of three long
integers, from 0 to 65535, representing red, green and blue intensities.

floating

Is the window a floating windoid (palette)?

Value Class

boolean

Examples

Notes

➤ The form, floating and modal properties of a window can be changed
only while using the Window Editor. They are read-only when the application
is running.

➤ Floating and modal cannot both be true at the same time.

RGB color {redValue, greenValue, blueValue}

integer index to color in System color lookup table

constant black / white

copy the fill color of window “Paint box” to {theRed, theGreen, theBlue}
set the fill color of window “Food” to white
set the fill color of window “ColorByRGB” to {48059,48059,48059}
set the fill color of window “ColorByIndex” to 23

copy the floating of window “Soap” to itFloats
set the floating of window “Ivory Soap” to true --from Message Windoid
219

220

Chapter 12: Windows

Properties of windows
➤ If floating and modal are both false, the window is a document
window.

➤ A script (in the Message Windoid) can set floating or modal to true,
but not to false.

➤ If the form, floating, or modal property is changed, the others change
to correspond.

focus

The window item (in this window) that is receiving keystrokes.

Value Class

reference

Examples

Notes

➤The focus of a window remains set even while the window is inactive.

➤ If you set the focus to a window item, that window item will get a focus
received message. If the focus is taken from a textbox that has been
edited, that textbox gets a changed message.

➤ Selected content in inactive windows can be located and manipulated using
the focus, contents, and selection properties, as shown in the
examples above.

➤ If the window contains no editable textboxes or key scrollable
listboxes, the value of the focus property is none.

copy the focus of window “WhereIsTheSelection” to theFocusObj
--Get text from the object if it is a textbox:
if class of theFocusObj is textbox then

copy contents of theFocusObj to myText
copy the contents of the selection of theFocusObj to mySelectedText

end if
--Give the focus to a specific window item:
set the focus of window “Edit Me” to textbox 2 of window “Edit Me”

Chapter 12: Windows

Properties of windows
font

The default font of window items in the window.

Value Class

Examples

Notes

➤ If the font of a window item, such as a button, is not set, that item’s text
is displayed in the font of the window.

➤ Changing the font property of a window changes the font of every
window item for which the font property has not been explicitly set.

➤ Once the font of a window item is set, the window item can no longer
inherit the window’s font.

form

The form of the window as defined by a form definition resource.

Value Class

Examples

Notes

➤ The form property of a window can be changed only while using the
Window Editor. It is read-only when the application is running.

string the name of the font

constant document window / modal dialog /

floating windoid

copy the font of window “Source Document” to itsFont
set the font of window of theObj to “Geneva”
set the font of window “Cubs” to “Chicago”

copy the form of window “Mystery” to itsForm
if form of window 2 modal dialog then close window 2
221

222

Chapter 12: Windows

Properties of windows
➤ The form of a window determines how the window looks and behaves.

➤ The form definition resources for windows (as opposed to those for
window items) are predefined and cannot be removed.

➤ Document window is the default form.

➤ If the form, floating, or modal property is changed, the others change
to correspond.

grow item

A single window item that resizes when the window is resized

Value Class

reference

Examples

Notes

➤ The grow item property is included for backward compatibility with
FaceSpan 1.0. Any or all window items now can be made to grow (or move)
using the growth property for window items.

➤ When a window is resized, window items above or to the left of the grow
item remain fixed in their original positions, while window items below or
to the right of the grow item move in order to maintain their positions
relative to the bottom and right edges of the grow item.

➤ Window items aligned with the bottom or right edges of the grow item
are resized along with the grow item.

➤ When constructing a window that is to contain a grow item, make the
window the smallest size that the user will be permitted to shrink it, set the
window’s min size property to those dimensions, then create the grow
item and the rest of the window’s items.

copy the grow item of window “Document1” to theGrower
set the grow item of window “Food” to window item “Grow Me!”

Chapter 12: Windows

Properties of windows
height

The height of the content area of the window, measured in pixels.

Value Class

integer

Examples

Notes

➤ Window height measurements do not include title bars or frames.

➤ When the height changes, the bounds property also changes.

id

The current identification number of the window.

Value Class

integer

Examples

Notes

➤ Each window receives an id when it is opened, and that id does not
change while the window remains open; however, it may have a different id
each time it is opened.

➤ A window must be opened by name, since its id does not exist until it is
opened.

➤ Id is a read-only property.

copy the height of window “AmazingColossalDialog” to itsHeight
set the height of window “AmazingColossalDialog” to itsHeight + 100

copy the id of window “Source Document” to itsID
set the name of window “Source Document” to somethingFrench
--Use itsID to reference the window in the rest of the script.
223

224

Chapter 12: Windows

Properties of windows
idle delay

The frequency with which the window receives idle messages.

Value Class

integer

Examples

Notes

➤ The idle delay value is expressed in whole seconds.

➤ If a window and its application have different idle delay values, the
idle delay of the window is ignored unless it is greater than that of the
application.

➤ If the idle delay is 0, the window receives idle messages as often as
possible.

➤ Your scripts can send idle messages; this will allow user interaction and
window updates to occur during time-consuming processing. See the
description of the idle event later in this chapter.

index

The position of an open window in the front-to-back ordering of all open
windows.

Value Class

integer

Examples

copy the idle delay of window “wired” to itsDelay
set the idle delay of window “toasted” to 0

copy the index of window “WhichWindowIsThis” to itsIndex

Chapter 12: Windows

Properties of windows
Notes

➤ The front most window has an index of 1.

➤ The commands send to back and bring to front, as well as
opening and closing other windows, can change the value of the index.

➤ The index property is read-only.

max size

The largest size to which the window can be resized or zoomed.

Value Class

Examples

Notes

➤ The max size property is given in pixels.

min size

The smallest size to which the window can be resized or zoomed.

Value Class

Examples

Notes

➤ The min size property is given in pixels.

➤ Be sure to set the min size of any resizable window to dimensions that
maintain its visual integrity.

point {maximumWidth, maximumHeight}

point {minimumWidth, minimumHeight}

copy the max size of window 1 to {maxWidth, maxHeight}
set the max size of window 1 to {maxWidth, maxHeight+100}

copy the min size of window “Prolog” to {minWidth, minHeight}
set the min size of window “Prolog” to {minWidth, minHeight+100}
225

226

Chapter 12: Windows

Properties of windows
modal

Is the window a modal dialog?

Value Class

 boolean

Examples

Notes

➤ The form, floating and modal properties of a window can be changed
only while using the Window Editor. They are read-only when the application
is running.

➤ Floating and modal cannot both be true at the same time.

➤ If both floating and modal are false, the window is a document
window.

➤ A script (in the Message Windoid during editing) can set floating or
modal to true, but not to false.

➤ If the form, floating, or modal property is changed, the others change
to correspond.

name

The name of the window. A window now has a name property that is distinct
from its title property. The name property is the name by which you may
refer to the window. The title is what appears in the title bar of the
window.

Value Class

string

Examples

copy the modal of window “Mystery Window” to itsModal

copy the name of window of theObj to objWindow
--Keep the id for future reference, then rename the window:
copy the id of window objWindow to objWdwID
set the name of window id objWdwID to “To Paráthuro”

Chapter 12: Windows

Properties of windows
Notes

➤ To change a window’s name without losing your reference to the window,
obtain its id when you open it, then use the id as the reference until it is
closed.

➤ If a script changes the name of a window in a running project or
application, then issues the save command, a new template by that name
will be saved into the application.

➤ For compatibility, the name property stored for windows in existing
projects will be used as both the name and the title. Please note, however,
that this change may cause some projects to “break.”

➤ If a script had been changing a window’s title by setting its name property,
the title will not change as expected. Conversely, if a script had been changing
a window’s name by setting its title property, subsequent references to the
window by its new name will fail, because only its title will have changed.

pen color

The color of the window’s foreground, usually its outline and title.

Value Class

Examples

Note

➤ The pen color property is always returned as an RGB value, a list of
three long integers, from 0 to 65535, representing red, green and blue
intensities.

RGB color {redValue, greenValue, blueValue}

integer index to color in System color lookup table

constant black / white

copy the pen color of window “Paint box” to itsPen
set the pen color of window “Paint box” to black
set the pen color of window “ColorByRGB” to {48059,48059,48059}
set the pen color of window “ColorByIndex” to 48
227

228

Chapter 12: Windows

Properties of windows
position

The position of the content area of the window on the screen.

Value Class

Examples

Notes

➤ The position property is always returned as a point; note the order of the
coordinates.

➤ When expressed as a point, the position is the location of the top-left
corner of the content area of the window as measured from the top-left corner
of the screen.

➤ When expressed as a constant:

♦ main means the screen that contains the menu bar.

♦ current means the screen that has the focus.

♦ deepest means the screen with the largest color depth.

♦ staggered arranges windows in a cascade from the upper left
corner of the monitor to the lower right corner.

point {leftOffset, topOffset}

constant centered in main

centered in current

centered in deepest

staggered in main

staggered in current

staggered in deepest

offscreen

copy the position of window “WhereIsIt” to {wdwH, wdwV}
set the position of window “WhereIsIt” to {wdwH+100, wdwV+100}
set the position of window “Stealth” to offscreen
set the position of window “centerme” to centered in main

Chapter 12: Windows

Properties of windows
Each staggered window is positioned 16 pixels below and 16 pixels to the
right of the window behind it. It is useful when opening several windows in
succession, from a single script.

private menus

Menus displayed on the menu bar while the window is active.

Value Class

Examples

Notes

➤ A window’s private menus property does not include the names of
menus used by the project as a whole—that is, the menus above the dividing
line in the Menus View of the Project Window.

➤ Any menu can be among the private menus of more than one window,
since only one window can be active at a time.

re

A reference to a window item in a description record.

Value Class

list of strings {“menuName”, “menuName”, …}

 integer index or id

 string name

copy the private menus of window “Restaurant” to itsMenus
if “Wines” is in itsMenus then display dialog “Wine?” buttons {“Never”}
229

230

Chapter 12: Windows

Properties of windows
Examples

Notes

➤ The re property is a component of records returned by the changes,
description and closing item properties.

➤ The re property is a component of records accepted by the with
properties and returning properties parameters of the open
window command, and of the with properties parameter of the make
command.

➤ When you give a value for the re property, you may use the value of the
index, id, or name property of a window item.

➤ Re is always returned with the value of the id property (an integer greater
than 7000), since the id of a window item never changes.

➤ For more information, see the closing item, description, and
changes properties of windows, and the make command.

➤ If you give an re value for a window item that does not exist, no error
results; the record containing that re is ignored.

resizable

Does the window have a size box for changing its size?

Value Class

boolean

Examples

open window “Info” with properties {re:3, height:20}
open window “Tom” with properties {re:7890, width:30}
open window “Analysis” with properties {re:”balance”, contents:”0”}
set theItem to 7001 --could also be index or name
open window “Stealth” with properties {re:theItem, title:”Wow”}
open window “User Info” returning ¬

{{height:h, position:{x,y}}, {re:12, visible:isVisible, enabled:isEnabled}}

copy the resizable of window “MyDocument” to canResize
set the resizable of window “Keep Same Size” to false

Chapter 12: Windows

Properties of windows
Note

➤ Resizable is always false if the titled property of the window is
false or if the modal property of the window is true.

script

The compiled script of the window.

Value Class

script

Examples

Notes

➤ When the text of a script is assigned to the script property, it is
automatically compiled.

➤ An error occurs if the text of the assigned script cannot be compiled. You
must handle such an error with a try statement.

➤ As soon as a script has been successfully assigned, it can be executed.

size

The default point size of text in window items in the window.

Value Class

integer

Examples

copy (the script of window “Edit Text”) as text to textbox “txtScript”
set the script of window “Test” to contents of textbox “txtScriptTester”

copy the size of window “Source Document” to textHeight
set the size of window of theObj to 12
231

232

Chapter 12: Windows

Properties of windows
Notes

➤ If the size property of a window item, such as a button, was not explicitly
set, its text is displayed in the font size of the window.

➤ Changing the size property of a window changes the font size of every
window item for which the size property has not been explicitly set.

➤ Once the size property of a window item has been set, it no longer is
affected by changes to the window’s size property.

style

The default style of text in window items in the window.

Value Class

text style info

Examples

Notes

➤ If the style property of a window item, such as a button, was not
explicitly set, its text is displayed in the style of the window.

➤ Changing the style property of a window changes the style of every
window item for which the style property has not been explicitly set.

➤ Once the style property of a window item has been set, it no longer is
affected by changes to the window’s style property.

➤ For information about the text style info class, see Chapter 15:
“Special Artwork and Text Style Classes.”

text to speech

Text to Speech works with text boxes.

Value Class

String

copy the style of window “Source Document” to wdwStyle
set the style of window “Watcher” to ¬

{on styles:{underline}, off styles:{bold, italic, outline, shadow, group}}

Chapter 12: Windows

Properties of windows
Example

Notes

➤ If the system has the appropriate “Text to Speech” software installed, the
above command will use the voice “Kathy” to speak the text.

➤ You can store a list of voices by setting a variable to every file of folder
“Voices” of the extension folder. See the second command in the above
example.

title

A window now has a title property that is distinct from its name property.
The title property is what appears in the title bar of the window. The name
property is the name by which you may refer to the window. The title property
now appears in the Object Info dialog for windows in the Property Bar’s
“Properties” pop-up menu.

Value Class

string

Notes

➤ For compatibility, the name property stored for windows in existing
projects will be used as both the name and the title. Please note, however,
that this change may cause some projects to “break.”

➤ If a script had been changing a window’s title by setting its name property,
the title will not change as expected. Conversely, if a script had been changing
a window’s name by setting its title property, subsequent references to the
window by its new name will fail, because only its title will have changed.

On hilited theObi
say “this is a test” using voice “Kathy”

end hilited

“set foo” to every file of folder “Voices” of extension folder
233

234

Chapter 12: Windows

Properties of windows
titled

Does the window have a title bar?

Value Class

boolean

Examples

Notes

➤ A document window cannot be closeable, resizable, or
zoomable unless its titled property is true.

➤ A modal dialog is not movable unless its titled property is true.

uniform styles

The default text styles that apply to the window items in the window.

Value Class

text style info

Examples

Notes

➤ If the uniform styles property of a window item, such as a button, was
not explicitly set, its text is displayed in the style of the window.

➤ Changing the uniform styles property of a window changes the
uniform styles of every window item for which the uniform styles
property has not been explicitly set.

copy the titled of window “MyDocument” to isTitled
set titled of window “Drag Me Around” to true

copy the uniform styles of window “Source Document” to itsUStyles
set the uniform styles of window 1 to ¬

{on styles:{underline}, off styles:{bold, italic, outline, shadow, group}}
set the uniform styles of window “Chameleon” to itsUStyles

Chapter 12: Windows

Properties of windows
➤ Once the uniform styles property of a window item has been set, it
no longer is affected by changes to the window’s uniform styles
property.

➤ For information about the text style info class, see Chapter 15:
“Special Artwork and Text Style Classes.”

visible

Is the window visible?

Value Class

boolean

Examples

Notes

➤ Even an invisible window has a valid index and all other window
properties; it is still open.

➤ Another way to make a window “invisible” is simply to set its position
to offscreen.

➤ To find out whether or not a window is open, use if exists window
“X”.

width

The width, in pixels, of the content area of the window.

Value Class

integer

Examples

copy the visible of window “May Be Hidden” to canSeeIt
set the visible of window “Stealth” to false

copy the width of window “Girth of Earth” to itsWidth
set the width of window “He’s not here” to the width of movie “Elvis”
235

236

Chapter 12: Windows

Properties of windows
Notes

➤ The width of a modal dialog does not include its frame.

➤ Changing the width of a window changes its bounds, too.

zoomable

Does the window have a zoom box?

Value Class

boolean

Examples

Note

➤ Zoomable is always false if titled of the window is false.

zoomed

Is the window zoomed to its maximum size?

Value Class

boolean

Examples

Note

➤ When the zoomed property is set by a script, the window receives a
resized message and a moved message, but not a zoom out message.
The window also zooms out.

copy the zoomable of window “MyDocument” to itsCanZoom
set the zoomable of window “No Zooming” to false

copy the zoomed of window “Lens” to itIsZoomed
set zoomed of window “Lookout!” to true

Chapter 12: Windows

Window Command and Event Messages
Window Command and Event Messages

Because windows contain the window items, any message sent to a window
item can be intercepted and handled by its window if the window item
chooses to ignore or to continue the message.

Listed here are a few additional command and event messages that are sent
directly to windows. The listing tells the source of the message—either a
command issued from a script, or an event from the system or from user
interaction.

Any message sent by an event can also be sent by a command; the name of
the message is the name of the command.

activated

Event message sent when the window has become active.

Parameters

Examples

Notes

➤ A window becomes active when it is brought to the front of other windows
in the application, when it is opened, and when a modal dialog in front of it is
closed.

➤ A window becomes active also when it is the front window of the
application, and the application becomes front most.

(direct) reference the activated window

--Redraw a normally hidden item after a modal dialog closes (see notes):
on activated theObj

tell picture “picLastView” to draw
end activated
237

238

Chapter 12: Windows

Window Command and Event Messages
➤ The active window is distinguished by the active appearance of its title bar,
scroll bars and buttons.

➤ If you are using the draw command to selectively display invisible window
items (such as when animating a series of pictures), the image is lost when
another window comes to the front, then closes. Use the activated
message to detect when you need to redraw the image.

bring to front

Command to bring the window to the front of the layering.

Parameters

Examples

Notes

➤ The index of the window becomes 1; the indices of all open windows that
were in front of this one also change.

➤ Any handler for this message must continue the message or the window will
not be brought to the front.

chosen

Event message sent when the user chooses a menu item from a menu.

Parameter

direct) reference the window to be brought to
the front

(direct) reference the chosen menu item

bring to front window “Hieroglyphic”

Chapter 12: Windows

Window Command and Event Messages
Examples

Notes

➤ The chosen message is sent to the front window if any windows are open;
otherwise, it is sent to the application.

➤ The window should handle the chosen message if it has private menus. If
the message is not for its own menu, continue the chosen message so
that the project script can handle it.

➤ See Chapter 10: “Scripting Your Application,” for more discussion of the
chosen message.

--In any script, we can simulate choosing a menu item:
chosen menu item “Open” of menu “File”

--Outline of a typical chosen handler:
on chosen theObj

--Get the title of the menu, and the index of the item::
copy the title of menu of theObj to theMenu
copy the index of theObj to theMenuItem

if theMenu is myPrivateMenu then --see if it should be handled here
-- Handle messages from menu “Templates”
if theMenuItem is 1 then

--handle first menu command here
else if theMenuItem is 2 then

--handle second menu command here
...etc.
else
 --handle last menu command here
end if

else
continue chosen theObj -- Let the application handle it

end if
end chosen
239

240

Chapter 12: Windows

Window Command and Event Messages
click

Event message sent when the application user clicks anywhere in the window.

Parameters

Examples

Notes

➤ The coordinates of the mouse are relative to the window; the top-left corner
of the content area is at {0, 0}.

➤ The constants for the upon parameter specify the various parts of a
window; they are: close box, zoom box, size box, title bar,
menu bar and none. The content area is given as none.

➤ The ticks parameter is given as 60ths of a second since system startup; it
is used to calculate elapsed time, not actual clock time.

(direct) reference the window

at point coordinates of the mouse

upon constant part of window

[option down] boolean Option key is down

[shift down] boolean Shift key is down

[command down] boolean Command key is down

[control down] boolean Control key is down

[ticks] long integer time at which click occurred

--A click handler that disallows clicks in the content area:
on click theObj at thePos upon thePart

if thePart is none then
beep 1

else
continue click theObj at thePos upon thePart

end if
end click

Chapter 12: Windows

Window Command and Event Messages
➤ Any handler for the click message must continue the message or
normal interaction with the window will not occur.

➤ If the upon parameter is not accepted and continued, normal window
operations, such as closing and resizing, will be inhibited.

➤ If a click handler in the window needs a certain parameter, then any
click handlers in the window items must accept and continue that same
parameter.

close

Event message sent as the window is closed.

Parameters

Examples

Notes

➤ If a window of a running application is closed as the result of a system shut-
down, the per parameter is a reference to the window itself.

➤ If a window of a running project is closed by clicking the Stop button or by
quitting FaceSpan, the per parameter is a reference to the window itself.

(direct) reference the window to be closed

per constant close box

or reference the object that closed

the window, usually

a button

on close theWindow per theClosingItem
if theClosingItem is close box then

display dialog “Closed with the close box.”
else

display dialog “Closed per “ & (name of theClosingItem)
end if
continue close theWindow per theClosingItem

end close
241

242

Chapter 12: Windows

Window Command and Event Messages
➤ If a window of a running project is closed by a close command in a script,
that command specifies the object reference passed in the per parameter.

➤ Any handler for this message must continue the message or the window will
not close; that might, in fact, be what you wish.

deactivated

Event message sent to the active window when it becomes inactive.

Parameters

Notes

➤ The front window is deactivated when another window is brought to the
front, when a modal dialog opens, or when another application is brought to
the front.

➤ The deactivated message is not sent to a window when it is closed.

delete

Command to delete the specified window item, menu item or listbox item.

Parameters

Examples

Notes

➤ The delete command cannot delete a window item from the window that
contains the handler issuing the command.

➤ Delete is the inverse of the make command.

(direct) reference the window that was deactivated

(direct) reference the window item to delete

tell window “Whoops” to delete window item 2
delete menu item 1 of menu “Templates” of window “Other”
delete listbox item n of listbox “Registry”

Chapter 12: Windows

Window Command and Event Messages
draw

Command to redraw the window and all window items.

Parameters

Examples

Notes

➤ When a handler makes visible changes to a window or its items, the changes
are normally not shown until the handler concludes. To display the changes
as soon as they are made, send draw commands from the handler to the
window or window items that were changed.

➤ If you tell the window to draw, all the window items will also be drawn, in
index order (back to front).

➤ See the idle message discussion for an example of the idle command,
a general way to get a window to redraw itself.

get data

Command to get some data from the window.

Parameters

Examples

(direct) reference the window

(direct) reference the window

[as] type class the type class wanted

draw window “Preferences”
tell window item 3 to draw

get data of window “Preferences”
243

244

Chapter 12: Windows

Window Command and Event Messages
Notes

➤ The value returned by get data is identical to the value of the changes
property of the window.

➤ Use the as parameter to coerce the default value into another type class.

➤ The get data command is included in FaceSpan for the sake of
completeness; it is seldom necessary in actual practice.

idle

Event message sent by the application when no other events are occurring.

Parameters

Examples

Notes

➤ The idle message is sent to the window by the application once every two
seconds, by default, or at the interval specified by the idle delay
property.

(direct) reference the window

--Example loop for a time-consuming process.
repeat with i from 1 to theCount

--(Put the next step in the process here. See the notes.)
idle

end repeat

--Idle message handler:
on idle theObj

--Beep every 10 seconds
global lastTicks
set ticksNow --using the Ticks scripting addition
if ticksNow - lastTicks > 600 then

beep 1
set lastTicks to ticksNow

end if
end repeat

Chapter 12: Windows

Window Command and Event Messages
➤ If a window and its application have different idle delay values, the
idle delay of the window is ignored unless it is greater than that of the
application.

➤ As shown in the first example, the idle message can be sent as a command
from within time-consuming loops to allow window updates and user
interaction. Important: Since the idle command allows user interaction,
make sure that the user cannot restart this script while it is running! For
example, if the script is in the hilited handler of a button, the script should
disable the button before entering the loop.

make

Command to create a new object.

Parameters

Examples

[new]

(direct) Objectclass object to make

at reference container or location

in a container

[with properties] record or properties to be

list of record assigned

make menu item with properties {name:”Overview”, mark:”•”} ¬
at beginning of menu “Views”

make textbox with properties {class:textbox, ¬
bounds:{0,0,100,100}, contents:”Voila!”, ¬
editable:true, position:{99,8}) at end of window 1

make new window with properties ¬
{{bounds:{77, 101, 475, 301}, form:modal dialog, ¬
titled:true, zoomable:false, private menus:{}, ¬
name:”Bob”}, {class:push button, ¬
bounds:{195, 151, 275, 171}, name:”cancel”, ¬
title:”Cancel”}, {class:push button, ¬
bounds:{282, 151, 362, 171}, name:”ok”, title:”OK”}}

make storage item with properties {name:”TJ”, contents:”Thomas Jefferson”}
245

246

Chapter 12: Windows

Window Command and Event Messages
Notes

➤ A new window can be made at any time, from any script; this does not
create a new window template. If a script saves the window with the save
command, a new template will be saved into the application; it can later be
edited with the Window Editor.

➤ A window cannot make a new window item within itself, nor can a window
item make a new item within its own window.

➤ When making a window item, the at parameter, if used, specifies the
position of the new item in the layering; beginning means the bottom
layer, while end means the top layer.

➤ When making a window item, the with properties parameter is
required, and must include the name and bounds properties.

➤ New listbox items can be made in any listbox.

➤ New menu items can be made in any menu currently displayed; the menu
template is not changed.

➤ New menu items can be made in any popup; some menu item properties do
not apply to menu items in popups.

➤ New storage items can be made at any time from any script; they are
persistent from run to run.

moved

Event message sent when the window is moved by use of its title bar or by
zooming.

Parameters

Examples

(direct) reference the moved window

on moved theObj
--Make the window snap to an imaginary 16-pixel grid:
copy the position to {theLeft, theTop}
set theLeft to (theLeft div 16) * 16
set theTop to (theTop div 16) * 16
copy {theLeft, theTop} to the position

end moved

Chapter 12: Windows

Window Command and Event Messages
Notes

➤ Changing a window’s position property does not cause a moved
message.

open

Command to open a window.

Parameters

Examples

Notes

➤ The optional returning properties parameter or returning
parameter is used with modal dialogs to retrieve information changed by the
application user.

(direct) reference the window to open

[with properties] record or

list of record

values to override

[returning properties] record or

list of record

record(s) to return

[returning] record or

list of record

values to assign

open window “W” returning properties {closing item: 0} --see notes
open window “W” returning {closing item:theCloser} --see notes

open window theDialog ¬
with properties {re:”txtMessage”, contents:”Enter your name:”} ¬

returning {re: “txtName”, contents: theName}
display dialog “Your name is “ & theName
247

248

Chapter 12: Windows

Window Command and Event Messages
➤ An open window command with a returning properties
parameter returns (in the result) a record structured just like the
parameter’s record, except that the real values are filled in. The values you
give are merely place holders.

➤ An open window command with a returning parameter returns
values of specified items directly in the variable names you give in the
parameter.

➤ See the discussions of the changes and closing item properties and
especially the re property for more examples of the open command.

➤ Use a single record to set or get the properties of the window or of a single
window item. Use a list of records to set or get the properties of two or more
objects.

➤ To find out whether or not a window is open, use if exists window
“X”.

➤ See Chapter 10: “Scripting Your Application,” for a detailed discussion of
the open command and its parameters.

prepare

Event message sent just before a window is opened.

Parameters

Examples

(direct) reference the window to be prepared

on prepare theObj
--Add this window’s name to the Windows menu:
copy name of theObj to windowName
copy (((count menu items of menu “Windows”) + 1) ¬

as string) to menuIndex
make new menu item at end of menu “Windows” with ¬

properties {name:windowName, ¬
command key:(menuIndex as string), ¬
enabled:true, checked:false}

end prepare

Chapter 12: Windows

Window Command and Event Messages
Note

➤ The prepare message is sent to a window after any changes caused by
the with properties parameter of the open statement have been
applied. Thus, everything is in place, but the window is not yet visible.

resized

Event message sent when the window is resized or zoomed by the user.

Parameters

Examples

Notes

➤ A resized message is not sent when the bounds property of the window
is changed by a script.

send to back

Command to send the window to the back of the layering.

Parameters

Examples

(direct) reference the resized window

(direct) reference the window to be moved

on resized theObj
--Make the window's width & height snap to an imaginary 16-pixel grid:
copy the bounds to {theLeft, theTop, theRight, theBottom}
set theRight to (theRight div 16) * 16
set theBottom to (theBottom div 16) * 16
copy {theLeft, theTop, theRight, theBottom} to the bounds

end resized

send to back window “Hieroglyphic”
249

250

Chapter 12: Windows

Window Command and Event Messages
Notes

➤ The indices of all open windows behind this one are incremented when this
one is sent to the back.

➤ Any handler for this command must continue the command or the window
will not be sent to the back.

sound

You can play and record sounds as either “snd” resources or as “AIFF” files.
You can even make the computer speak with Text to Speech. See text to
speech on page 232.

Example

Notes

➤ The new play commands simply initiate the sounds and return immediately.
Each command returns a reference to the ongoing sound so that the sound
may be paused, resumed or stopped. The existence (using if exists ...) of
the reference may be used to determine if the sound is still playing.

➤ To import a “snd” file, select the “Forms, etc.” view in the project window.
Click the Import button, navigate to the “snd” file and select it. To get
information on the sound or to test the sound from the project window,
double-click or click the open button when the sound is selected. Click the
speaker icon in the upper-right corner of the resulting dialog window to hear
the sound. To play the imported sound in a script, use the syntax: play audio
“The snd Name.”

record audio “new snd name” -- record a ’snd’ resource
record audio into file “Macintosh HD:New AIFF” -- record an AIFF file

play audio “new snd name” -- play a ’snd’ resource
play audio from file “Macintosh HD:New AIFF” -- play an AIFF file

Chapter 12: Windows

Window Command and Event Messages
zoom in

Event message sent when the window is to zoom in.

Parameters

Notes

➤ The default response to the zoom in message is to zoom the window back
its minimum allowable size, or to the position and size last set by the user.

➤ The zoomed-in size of a window cannot be less than the value of the min
size property.

➤ Any handler for this message must continue the message or the window will
not zoom in. In addition, the window will not be prepared to zoom out.

zoom out

Event message sent when the window is to zoom out.

Parameters

Notes

➤ The default response to the zoom out message is to zoom the window out
to its maximum allowable size.

➤ The zoomed-out size of a window cannot be greater than the value of the
max size property.

➤ Any handler for this message must continue the message or the window will
not zoom out. In addition, the window will not be prepared to zoom in.

(direct) reference the window to be zoomed

(direct) reference the window to be zoomed
251

252

Chapter 12: Windows

Special Considerations
Special Considerations

There are several other features of windows that you can use to your
advantage.

Scripts to Edit Windows
When a window template is open for editing in FaceSpan, an application can
send messages to FaceSpan itself to augment the construction of the window
template.

First, a script can get information about the window and window items being
edited:

➤ If a window is being edited, it is window 1.

➤ The number of window items in the widow can be obtained as the count
of window items of window 1.

➤ The indices of the currently-selected window items are in the selection
of window 1.

Given this information, you can get and set any property of the window or of
any window item.

In addition, you can use the make and delete commands to add window items
or to remove them. So, for example, you could write a script that sets the
bounds of the window to a standard modal dialog size, makes a textbox for a
message, and makes an OK button, thereby turning the window into a
standard modal dialog.

Every, Whose and Where
You can use the standard AppleScript selection terms—the every, where
and whose clauses—to refer to window items. This statement could be in the
script of a running application, or it could be executed from the Message
Windoid while editing:

Window items can be selected by property values as well, using a where or
whose clause:

set the enabled of every push button of window 1 to false

set enabled of (every window item of window 1 whose enabled is false) to true

Chapter 12: Windows

Special Considerations
Restrictions on the Quit Command
If a handler in a window executes an unqualified quit command, the default
target of the command is the window itself; this is not permissible.

The window’s script should have quit current application instead,
or a quit command could be sent to the window from the project or from
another window.

Opening Several Copies of a Window
You can open several windows based upon the same window template
resource. If you do, either change the name of each copy, or refer to the
windows by their index or id properties.
253

254

Chapter 12: Windows

Special Considerations

Chapter 13:

Window Items
Contents:

Window Items 257 Pictboxes 337

Common Properties 259 Popups (Pop-up Menus) 347

Forms and Filters 285 Push Buttons 352

Boxes 288 Radio Buttons 358

Checkboxes 295 Tables 362

Gauges 299 Rows of Tables 379

Graphic Lines 305 Columns 384

Icons 307 Cells 389

Labels 312 Textboxes 398

Listboxes 314 Text Suite 398

Listbox items 325 Characters 418

Movies 327 Lines, Paragraphs, Words 421

Chapter 13: Window Items

Window Items
Window Items

Window items are interface objects—buttons, labels, textboxes, pictboxes
and others—that form the working parts of windows. Each window can
contain many window items.

A window item is defined and controlled by a set of properties, and is
responsive to various messages sent by commands and interface events.

Some properties and messages are common to all window items; these are
described first. The properties and messages that are unique to each class of
window item are described under the headings for the window items.

Reference Forms
A window item can be referenced by its name, id or index property, or by
index relative to its peers. For example:

➤ push button “pshOK”

➤ push button 1

➤ push button id 7003

➤ window item 3

➤ window item “pshOK”

Note that when you refer to a window item by index, there are two ways you
can do so. You can refer to the object’s index property, which is its index
relative to all window items. An example is window item 3. Or you can
refer to the index of the object in relation to other objects of the same class.
An example is push button 1, which refers to the push button having the
lowest index number of all push buttons in the window.

To obtain a reference to the window that contains the window item, use:

window of theObj

where theObj is a reference to the window item.
257

258

Chapter 13: Window Items

Window Items
A reference to a window item is implemented in terms of its index. Although
this implementation seldom has surprising consequences, you should be
aware of the possibilities.

Consider these three statements:

The reference theObj really is referring to window item 3. The first set
statement makes the button become window item 4. The next set statement
sets a property of the new window item 3. This consequence is easy to avoid:
do not change an item’s index in one of its own handlers.

on hilited theObj --a push button, window item 3
set the index of theObj to 4
set the enabled of theObj to false

end hilited

Chapter 13: Window Items

Common Properties
Common Properties

These properties are common to most or all window items; any exceptions are
listed. All window items have additional, unique properties, which are
discussed in the sections for the individual items.

balloon

Text of a message or name of a picture resource to be displayed in a window
item’s help balloon.

Value Class

string

Examples

Notes

➤ The balloon can be made to display a picture instead of text. Simply enter
the name of a picture that you have imported into your project.

➤ If you want the balloon to display text that is the same as the name of a
picture, prefix the text with a space.

bounds

Offsets of the four sides of a window item.

Value Class

Examples

list of integer bounding rectangle {left,top,right,bottom}

set the balloon of theObj to “What are YOU looking at?”
set the balloon of listbox “Poisons” to “Skull and Crossbones Picture”

copy the bounds of theObj to itsBounds
copy the bounds of textbox 3 to {boxLeft, boxTop, boxRight, boxBottom}
set the bounds of textbox 3 to {boxLeft, boxTop, boxRight+16, boxBottom+12}
259

260

Chapter 13: Window Items

Common Properties
Notes

➤ The offsets are measured in pixels from the top-left corner of the window
containing the window item.

➤ Changing a window item’s bounds also changes its height, width and
position.

changes

The properties of the window item that can be changed by an application user.

Value Class

Examples

Notes

➤ In the example shown, the changes property would be a record similar to:
{re:7004, contents:“I typed this in the textbox.”}.

➤ The changes record in no way implies that the contents have actually
been changed.

➤ If a window item has no properties editable by the application user, its
changes property is a record containing only the re property.

➤ The changes property exists simply by analogy to the window’s
changes property; it can be used to restore values to a window item when
the window is reopened. See the discussion of the open command in Chapter
12: “Windows”.

➤ Changes is a read-only property.

record {re:objectId,propertyName:propertyValue…}

copy the changes of textbox 1 to whatsChanged

Chapter 13: Window Items

Common Properties
class

Object class of the window item.

Value Class

Examples

Notes

➤ The standard data types in AppleScript have classes as well; they are:
integer, real, boolean, string (or text), list, record and
alias. Note in particular that list and listbox are distinct, as are text
and textbox.

➤ Class is a read-only property.

contents

The value of the “typical” property of the window item.

Value Class

class push button / radio button / checkbox / table / textbox /
pictbox / icon / movie / listbox / popup / gauge / table / box /
graphic line

boolean hilite (false) of a push button

hilite of a radio button

hilite of a checkbox

integer setting of a gauge

resource info artwork of an icon

artwork of a pictbox

alias artwork of a movie

contents of a textbox

artwork of a pictbox

copy class of theObj to theClass
if theClass is push button then copy name of theObj to theName
261

262

Chapter 13: Window Items

Common Properties
Examples

Notes

➤ In general, if you wish to obtain and operate upon the contents, you must
know its value class, since each is limited to certain operations.

➤ See the discussions of contents in the detailed property descriptions of
the various window items later in this chapter.

➤ When the form of a listbox, popup or menu is not standard, the entries that
must be typed into it might be textual descriptions or references to the actual
displayed contents. See the section, “Resources and Key Filters”, below.

➤ When a textbox or table cell has a key filter assigned to it, the key
filter can determine the class of values that can be assigned to or retrieved
from the textbox or cell.

➤ If the window item displays its contents, the default contents is the
item’s class name.

➤ The contents of a window is the same as its changes property.

string title of a label

contents of a textbox

contents of selection of a textbox

title of a box

title (““) of a graphic line

contents or name of a listbox item

contents or name of a menu item

list of string contents of a listbox

contents of selection of a listbox

contents of a popup

contents of selection of a popup

contents of a menu

contents of a table row

contents of a table column

list of list of contents of a table

contents of selection of a table

copy the contents of theObj to objContents

Chapter 13: Window Items

Common Properties
description

A record of properties describing the window item.

Value Class

Examples

Notes

➤ The description does not include some properties if they have the
default values. Therefore, its main use, as in the example, is to duplicate a
window item.

➤ Description is a read-only property.

drag locked

Can the window item be dragged during editing?

Value Class

boolean

Notes

➤ If the drag locked property is true, the window item cannot be moved
while editing the window.

➤ The drag locked property applies while using the Window Editor, not
while running the application.

➤ When the cross-hair cursor passes over a drag locked item, it does not
change to the mover cursor.

➤ Drag locked is false when a window item is created.

record {propertyName:value,propertyName:value,…}

set itsDescr to the description of theObj
copy description of push button 3 of window “Originals” to mold
make push button “Clone” at end of window “different” with properties mold
263

264

Chapter 13: Window Items

Common Properties
draggable

Can the item be dragged?

Value Class

boolean

Examples

Notes

➤ See the discussions of the drag and drop messages for information about
using this feature.

➤ Draggable is false by default.

droppable

Can the item have things dropped onto it?

Value Class

boolean

Examples

Notes

➤ To be droppable, a window item must be visible.

➤ A box must have a fill, or else only its border can receive a drop.

➤ See the discussions of the drag and drop messages for information about
using this feature.

➤ Droppable is false by default.

set the draggable of theObj to true

set the droppable of theObj to false

Chapter 13: Window Items

Common Properties
enabled

Is the window item responsive to user interactions?

Value Class

boolean

Examples

Notes

➤ Enabled window items are normal in appearance and responsive to user
interactions, while inactive items are dimmed and unresponsive to user
interactions.

➤ If enabled of a textbox is false, its contents cannot be selected and
it is omitted from the tabbing order.

➤ By default, enabled is true.

fill color

Color of the window item’s background.

Value Class

Examples

RGB color {redValue, greenValue, blueValue}

integer index to color in System color lookup table

constant black / white

get enabled of theObj
set enabled of push button “Save” of window “Untitled” to false

copy the fill color of theObj to itsFill
set fill color of push button “BlackedOut” to black
set fill color of box “grayFilled” to {32639,32639,32639}
set fill color of box “grayFilled” to 87
265

266

Chapter 13: Window Items

Common Properties
Notes

➤ The fill color property is always returned as an RGB value, a list of
three long integers, from 0 to 65535, representing red, green and blue
intensities.

➤ The specified fill color replaces all the white areas of pen and fill
patterns, as shown in the pen pattern and fill pattern palettes.

➤ The fill color property defaults to white.

font

The font in which a window item’s title or contents text is displayed.

Value Class

string

Examples

Notes

➤ The value of the font property is the font’s name.

➤ If the font of a window item, such as a button, was not explicitly set, its
text is displayed in the font of the window.

➤ Changing the font property of a window changes the font of every
window item for which the font property has not been explicitly set.

➤ To refer to the font of a selection within a textbox, pop-up menu, or
listbox, use a selection reference, as shown in the examples.

➤ The font defaults to “Chicago.”

set font of box 2 of window “Fonts” to “Chicago”
copy the font of theObj to itsFont
set boxFont to font of box “boxLabeled” of window 2
set the font of selection of textbox “txtQuery” to “Geneva”
copy the font of the selection of textbox 3 to itsFont

Chapter 13: Window Items

Common Properties
growth

How the window item’s bounds respond to resizing its window.

Value Class

Examples

Notes

➤ The growth property is a list of four integers, similar to a bounding
rectangle, telling how each side of a window item should move in relation to
the two moving sides of the window as it is being resized. The integers are in
the order: left, top, right and bottom sides. Each integer gives the percentage
of that side’s movement relative to the growth of the window’s side. For
example, {0, 0, 0, 0} means that no sides move—the item does not grow or
move. The list {100, 100, 100, 100} means that all sides move; the item will
slide over and down, following exactly the movement of the window’s sides,
but does not grow. The list {0, 0, 100, 100} anchors the left and top sides, but
the right and bottom sides follow exactly the movement of the window’s
sides—that is, the item grows.

➤ All the important growth properties are represented by the constants listed
above, under the heading “Value Class”.

➤ Any growth property value that is normally returned as a constant can be
coerced to a list of four integers.

➤ The growth of a window item defaults to none.

constant none / adjust height / adjust width /

adjust both / move across / move down /

move both

list of integer see notes

copy the growth of theObj to itsGrowth --a constant, or list (if custom)
copy (the growth of textbox “txtMessage”) as list to {l, t, r, b} --a list
267

268

Chapter 13: Window Items

Common Properties
height

Height in pixels of a window item.

Value Class

integer

Examples

Note

➤ Setting the value of the height changes the value of the bounds
property, but the value of the position property is unchanged.

id

Unique identification number of a window item.

Value Class

integer

Examples

Notes

➤ Each window item receives an id when it is created, and that id never
changes.

➤ The id property is assigned starting with 7001. The maximum id is 32767
(the largest number that is an integer). Integers less than 7000 are used for the
index property.

➤ Id is a read-only property.

set ht to the height of theObj
set the height of push button “Big Button” of window 2 to 64
set the height of theObj to height of box 2 of window 3

copy the id of theObj to idNum
copy the id of push button 3 of window 5 to idOfButton
set the fill color of window item id idNum to black

Chapter 13: Window Items

Common Properties
index

Order of a window item in the back-to-front layering of items in the window.

Value Class

integer

Examples

Notes

➤ The window items in each window are indexed sequentially from the
rearmost item (index 1) to the frontmost item.

➤ Increasing the index of a window item moves it forward in the layering,
obscuring the objects behind it (objects with lower indices).

➤ Changing the index of any window item other than the frontmost one
always changes the indices of other window items.

➤ An object reference—that is, a reference to the object—is
implemented in terms of the index.

name

Name of a window item.

Value Class

string

Examples

copy the index of theObj to itsPosition
set the index of textbox “MoveToBottom” to 1 --move the item to the back
set index of icon “RaiseByOne” to ((index of icon “RaiseByOne”) + 1)

copy the name of theObj to itsName
set myButtonName to name of push button 2 of window “AvailableNames”
set the name of icon 2 of window “Bots” to “Tom Servo”
269

270

Chapter 13: Window Items

Common Properties
Notes

➤ Window items do not display the values of their name properties; names
are used only for referencing window items in scripts. For displayed values,
see the descriptions of the contents property or the title property of
specific window items.

➤ Window item names default to a three-letter prefix giving the class,
concatenated to the word “Name,” which is concatenated to a digit or two
giving its order of creation. For example, the first push button you create is
called “pshName1.”

pen color

Color of the window item’s drawn areas, usually its text and borders.

Value Class

Examples

Notes

➤ The pen color property is always returned as an RGB value, a list of
three long integers, from 0 to 65535, representing red, green and blue
intensities.

➤ The specified pen color replaces all the black areas of pen and fill
patterns, as shown in the pen pattern and fill pattern palettes.

➤ By default, pen color is black.

RGB color {redValue, greenValue, blueValue}

integer index to color in System color lookup table

constant black / white

copy the pen color of theObj to itsPen
set pen color of push button 2 to black
set pen color of box “grayFrame” to {32639,32639,32639}
set pen color of box “grayFrame” to 87

Chapter 13: Window Items

Common Properties
position

Position of a window item within its window.

Value Class

Examples

Notes

➤ The position of a window item consists of the coordinates of its upper-
left corner relative to the upper-left corner of the window’s content area, in
pixels.

➤ Changing a window item’s position also changes its bounds, but not
its height or width.

script

Compiled script of a window item.

Value Class

script

Examples

list of integer point {left, top}

copy the position of theObj to {itsLeft, itsTop}
set the position of push button 3 of window “Satellite” to buttonPos
set the position of box “MoveMeToTopLeftOfWindow” of window 3 to {0,0}

copy (the script of theObj) as string to itsScript --decompiles
set testScript to “on hilited theObj” & return & “beep 1” ¬

& return & “end hilited”
set the script of push button “pshTester” to testScript
--A script can be put into a variable and executed:
copy the script of push button 1 to presto
tell presto to hilited
271

272

Chapter 13: Window Items

Common Properties
Notes

➤ When the text of a script is assigned to the script property, it is
automatically compiled.

➤ An error occurs if the text of the assigned script cannot be compiled. You
must handle such an error, probably with a try statement.

➤ As soon as the script property has been successfully assigned, it can be
executed.

➤ A script can be decompiled into a string simply by using as string
to coerce it.

➤ After a script has been copied to a variable (as script), the handlers in
that script can be told to execute, is in the examples.

➤ Window items by default have no script, not simply an empty one. (A
window has an empty script by default.)

size

Size in points of a window item’s displayed text.

Value Class

integer

Examples

Notes

➤ If the size of a window item, such as a button, was not explicitly set, its
text is displayed in the font size of the window.

➤ Changing the size property of a window changes the font size of every
window item for which the size property has not been explicitly set.

➤ To adjust the line spacing of text contained in textboxes, use the line
height property.

➤ To refer to the size of a selection within a textbox, use a selection
reference as shown in the example.

➤ The default size is 12 points.

copy the size of theObj to itsFontSize
set the size of textbox “txt8PointText” of window “TextSizes” to 8
set the size of the selection of textbox “txtMessage” to 18

Chapter 13: Window Items

Common Properties
style

Text style of the first character of the contents or title of a window item.

Value Class

text style info

Examples

Notes

➤ If the style of a window item, such as a button, was not explicitly set, its
text is displayed in the font style of the window.

➤ Changing the style property of a window changes the font style of every
window item for which the style property has not been explicitly set.

➤ To refer to the style of a selection within a textbox, use a selection
reference, as shown in the example.

➤ The default style is simply plain text.

➤ For information about the text style info class, see Chapter 15:
“Special Artwork and Textstyle Classes.”

uniform styles

Text styles that are uniformly on and off for all text contained by a window
item.

Value Class

text style info

set itsStyle to the style of theObj
set the style of textBox “txtName” of window “Preferences” to itsStyle
set the style of the selection of textbox “txtMessage” to itsStyle
set the style of textbox 3 of window “Notes” to ¬

{on styles:{italic},¬
off styles:{bold,underline,outline,shadow,group}}
273

274

Chapter 13: Window Items

Common Properties
Examples

Notes

➤ If the uniform styles of a window item, such as a button, was not
explicitly set, its text is displayed in the uniform styles of the window.

➤ Changing the uniform styles property of a window changes the
uniform styles of every window item for which the uniform styles
property has not been explicitly set.

➤ To refer to the uniform styles of a selection within a textbox, use a
selection reference, as shown in the example.

➤ For information about the text style info class, see Chapter 15:
“Special Artwork and Text Style Classes.”

visible

Is the window item visible in its window?

Value Class

boolean

Examples

Notes

➤ If visible is false, the window item cannot receive messages from
interactions with the application user.

➤ Invisible window items can be forced to draw, using the draw command.

➤ A window item can lie beyond the bounds of the window, and thus be
unseen, yet still have a visible property of true.

➤ Visible defaults to true.

copy the uniform styles of theObj to itsUniStyles
set the uniform styles of the selection of textbox 2 of window 1 to itsUniStyle
set the uniform styles of textbox 3 of window “Notes” to ¬

{on styles:{italic},¬
off styles:{bold,underline,outline,shadow,group}}

set itsVisibility to the visible of theObj
set the visible of textbox “txtMessage” to true

Chapter 13: Window Items

Common Properties
width

Width in pixels of a window item.

Value Class

integer

Examples

Note

➤ Changing the width of a window item changes its bounds but not its
position.

Window Item Command and Event Messages
Certain command and event messages can be sent to any window item. These
messages are listed here; any exceptions are noted.

Any event message can be sent by a command; the command name is the
name of the message.

adjust size

Command to adjust the size of the window item to fit its contents.

Parameters

Examples

Notes

➤ Labels, textboxes and listboxes adjust their heights to accommodate the
nearest number of whole lines of text, based upon the font size.

copy the width of theObj to itsWid
set the width of push button “pshBigButton” of window 2 to 64

(direct) reference the window item to be adjusted

adjust size theObj

set the contents of label “lblMessage” to “Please try again.”
tell label “lblMessage” to adjust size
275

276

Chapter 13: Window Items

Common Properties
➤ Popups adjust their heights to accommodate the font size of an item, and
adjust their lengths to accommodate the longest item.

➤ Gauges (scrollbars) adjust their widths (the narrow dimension) to the
standard size, 16 pixels.

➤ Tables adjust their widths and heights to accommodate the nearest whole
row and column.

➤ Pictboxes, icons and movies grow or shrink to fit the image exactly.

➤ The position of a window item remains stationary during the size
adjustment, but the bounds may change.

click

Event message sent when the application user clicks anywhere in the window
item.

Parameters

(direct) reference the window item

at point coordinates of the mouse

upon constant window part (see notes)

[option down] boolean Option key is down

[shift down] boolean Shift key is down

[command down] boolean Command key is down

[control down] boolean Control key is down

[ticks] long integer time at which click occurred

Chapter 13: Window Items

Common Properties
Examples

Notes

➤ The coordinates of the mouse are relative to the window; the top-left corner
of the content area of a window is at {0, 0}.

➤ The constants for the upon parameter specify the various parts of a
window: close box, zoom box, size box, title bar, menu bar
and none. The content area of a window is given as none.

➤ The ticks parameter is given as 60ths of a second since system startup; it
is used to calculate elapsed time, not actual clock time.

➤ Any handler for the click message must continue the message or
normal interaction with the window item and window will not occur.

➤ If the upon parameter is not accepted and continued, normal window
operations, such as closing and resizing, will be inhibited.

➤ If a click handler in the window needs a certain parameter, then any
click handlers in the window items must accept and continue that
parameter.

--Make a box act like a push button:
on click theObj at thePos upon thePart

set fill color to black
DoAction()
set fill color to white
continue click theObj at thePos upon thePart

end click

--Make a box act like a checkbox:
property nowOn:false
on click theObj at thePos upon thePart

if nowOn then
set fill color to white
DoOtherAction()

else
set fill color to black
DoAction()

end if
set nowOn to not nowOn
continue click theObj at thePos upon thePart

end click
277

278

Chapter 13: Window Items

Common Properties
drag

Event message sent when a window item is about to be dragged.

Parameters

Examples

Notes

➤ The data parameter is a list whose values describe the information to be
dragged. For a textbox, the data is a list of three values, the contents of
the selection, the styles of the selection, and the text of the
selection. For a listbox, the data is a list of two values, the contents
of the selection (itself a list) and the same information coerced to a
return-delimited string. For a movie, the data is a list of one element, the
displayed frame (a picture).

➤ You can change the contents of the data parameter to control the format
of the information that is dragged. It can be changed to whatever suits yours
needs, but the drop message handlers must expect the same format.

(direct) reference the window item to be dragged

data list the data to be dragged

initial outline rectangle the bounds of the item

initial mouse position point location where drag began

on drag theObj data theData initial outline theBox initial mouse position
thePt
--Alter theData here, or do nothing...
try

continue drag theObj data theData initial outline theBox ¬
 initial mouse position thePt

on error
--Script gets here if the mouse is released over a non-droppable item:
display dialog “I saw you littering!” buttons {“Sorry”}

end try
end drag

Chapter 13: Window Items

Common Properties
➤ The handler for the drag message must be continued if you wish the drag
to be completed. You can inhibit the drag simply by not continuing the
message.

➤ The continue statement fails if the application user “drops” the data over
an object that does not accept drops. You can use the try statement to handle
these cases.

draw

Command to redraw the window item.

Parameters

Examples

Notes

➤ When a handler makes visible changes to a window or its items, the changes
are normally not shown until the handler concludes. To display particular
changes as soon as they are made, you can send draw commands from the
handler to the window or window items that were changed.

➤ To draw all the window items, just tell the window to draw.

➤ Icons and pictboxes will draw even if their visible properties are
false. A simple form of animation entails putting all the images in an
invisible pile, then telling them to draw in succession.

➤ You often can avoid the necessity of sending draw commands by using the
idle command, which allows windows to receive normal update events. See
the discussion of the idle message in Chapter 12: “Windows.”

(direct) reference the window item to be drawn

draw theObj
draw window item 2 of window 1
draw push button “AllMessedUp” of window “Pandemonium”
tell window item 3 to draw
279

280

Chapter 13: Window Items

Common Properties
drop

Event message sent when dragged data is about to be dropped.

Parameters

Examples

Notes

➤ The data parameter is a list whose values describe the information to be
dragged. For a textbox, the data is a list of three values, the contents of the
selection, the styles of the selection, and the text of the
selection. For a listbox, the data is a list of two values, the contents
of the selection (itself a list) and the same information coerced to a
return-delimited string. For a movie, the data is a list of one element, the
displayed frame (a picture).

➤ If you changed the format of the data parameter in the drag handler, then
that is the format that the drop handler will receive.

(direct) reference the window item to be dropped into

data list the data that is to be dropped

upon integer the part of the item that will receive the drop

final outline rectangle the place where the drag outline ended

on drop theObj data theData upon endItem final outline endBox
--This handler accepts only values that can be coerced to string:
copy (item 1 of theData) to x --get the “contents” value
if class of x is string then

--Here the default behavior is accepted:
continue drop theObj data theData upon endItem final outline endBox

else if class of x is list then
--Here the handler uses the data the way it wishes:
set contents to x

else
beep 1 --it is not what I need
--Here the data is not used and the default behavior is rejected.

end if
end drop

Chapter 13: Window Items

Common Properties
➤ Continue the drop message only if you wish to accept the default
behavior. In a textbox, dropped text is inserted at the insertion point. In a
listbox, dropped text or listbox items are inserted at the (horizontal) insertion
point.

➤ To be droppable a window item must be visible. A box must have a
fill pattern or fill color, or else only its border can receive a
drop.

get data

Command to get some data from the window item.

Parameters

Examples

Notes

➤ The value returned by get data is identical to the value of the
contents property of the object. See the discussion, above, of the
contents property.

➤ Use the as parameter to coerce the default value into another type class.

➤ The get data command is not normally used, since properties are
accessed by name; get data is provided for completeness only.

mouse entered

Event message sent when the mouse becomes positioned over the window
item.

Parameters

(direct) reference the window item

[as] type class the type class wanted

(direct) reference the window item

set x to get data of theObj
281

282

Chapter 13: Window Items

Common Properties
Examples

Notes

➤ This message is paired with the mouse left message; that is, receiving
mouse entered means that the window item will eventually receive
mouse left.

➤ The mouse entered message handler often is used to initialize
conditions for the mouse within message handler.

mouse left

Event message sent when the mouse becomes no longer positioned over the
window item.

Parameters

Examples

Notes

➤ This message is paired with the mouse entered message.

➤ The mouse left message handler often is used to finish up after the
mouse within message handler.

(direct) reference the window item

--Make a box act as if it has the focus:
on mouse entered theObj

set the pen size to {4, 4}
end mouse entered

--Make a box (see previous example) act as if it lost the focus:
on mouse left theObj

set the pen size to {1, 1}
end mouse left

Chapter 13: Window Items

Common Properties
mouse within

Event message sent repeatedly while the mouse remains positioned over the
window item.

Parameters

Examples

Notes

➤ The mouse within message handler often is used to create animated
effects. It often is combined with handlers for the mouse entered and
mouse left messages.

➤ Changes made to the appearances of other window items or of the window
become visible when the handler terminates, which normally is immediately.

➤ The mouse within message is sent as often as possible, when no other
events are pending.

set data

Command to assign data to a window item.

Parameters

Examples

(direct) reference the window item

(direct) reference the window item

to anything the data to be assigned

--Animate a progress bar while mouse is over this window item:
on mouse within theObj

set myCount to myCount + 1
set the scroll of gauge “gagProgress” to myCount

end mouse within

set data of theObj to someData
283

284

Chapter 13: Window Items

Common Properties
Notes

➤ The class of the value assigned by set data should be identical to the
class of the value of the contents property of the object. See the
discussion, above, of the contents property.

➤ The set data command is not normally used, since properties are
accessed by name; set data is provided for completeness only.

show balloon

Command to show the help balloon for the item.

Parameters

Examples

(direct) reference the window item

item integer the part of the item that the cursor is over

message string the message to appear in the balloon

within rectangle the bounds within which to display the
balloon

tell window item 7 to show balloon item 1 message “Click here to quit.” ¬
within bounds of window item 7

Chapter 13: Window Items

Forms and Filters
Forms and Filters

Forms and Key Filters
The appearance and behavior of every button, gauge, listbox, menu, popup,
table cell and textbox is controlled by a form resource. A listbox form, for
example, might allow the listbox to display icons in addition to text, while a
button form might give the button a three-dimensional appearance.

The default standard form used by each window item is built into FaceSpan.
The standard listbox form, for example, lets a listbox display only text. The
default button form produces standard Macintosh buttons.

A form for a textbox, and the corresponding property, is called a key filter. A
key filter is a form that determines what can be typed into a textbox, and how
the contents is formatted.

You can add form definition resources to a project, then use them to control
window items. You import forms using the Forms View of the Project
Window, where the forms you have imported will be listed by name. The little
icon in front of each name has a letter indicating the kind of form it is: a “C”
represents forms for buttons and gauges, an “L” marks the forms for
listboxes, an “M” denotes forms for menus and popups, and a “K” represents
key filters for textboxes.

You assign a particular form to a window item by setting the item’s form (or
key filter) property, a string, to the name of that form (or key filter).

Formats
Some forms are so simple that they need no additional information to work
properly. For example, the OnlyDigits key filter allows only digits to be typed
into a textbox. Other forms can perform any of a number of functions and so
must be told which function to perform. These instructions are given to a form
by way of a format property.

Every window item that has a form property also has a format property. When
you assign a form to a window item, the format—if one is needed at all—must
be filled in appropriately. For example, the DisplayDates key filter can make
a textbox display a date in several ways; to make it display a date as “mm/dd/
yy”, the format property must be set to the words “short date”.

By the way, menus can use forms, but they do not use formats.
285

286

Chapter 13: Window Items

Forms and Filters
Form and Format Documentation
In the Forms View of the Project Window, double-clicking the name of a
form displays a modal dialog containing general information about the form.

When you are editing a window template, you can assign a form to a window
item. When you then choose Format from the Properties popup of the
Property Bar, a modal dialog appears; it tells the purpose of the form and how
it is used, and gives examples. You can copy the examples and use them for
your formats.

Key Filters
The forms for textboxes and table cells are called key filters. Key filters have
special behaviors that are quite powerful, and which thus warrant special
attention.

A key filter can determine the value class of data assigned to, and retrieved
from, a textbox or table cell. For example, assume that the DisplayNumbers
key filter is assigned to a textbox. You can assign a number to the contents of
the textbox, and when you get the contents, it is a number, not text. Of course,
you can still use as text to coerce it to text.

Furthermore, using the format property of the textbox can give results that
are even more useful. For example, assume that the string “'$'###,###.00” is
used as the format with the DisplayNumbers key filter. Now, if you set the
contents of the textbox to 1234.5, it automatically displays “$1,234.50”. If
you get the contents, it is still 1234.5, but if you get it as text, it is
“1,234.50”.

Examples and Sources of Forms
The “•Feature Highlights•” folder contains many projects that demonstrate
the features of several forms, and how to write scripts for window items that
use forms. In addition, the “FaceSpan Additions” project document contains
a variety of forms. Forms are also available from third parties. You can import
the forms from any of these sources directly into your projects, by way of the
Forms View of the Project Window.

Chapter 13: Window Items

Forms and Filters
Some Technical Notes
If you are a programmer, you probably recognize that forms for buttons and
gauges are code resources of type “CDEF,” forms for listboxes are “LDEF”
resources, menu and popup forms are “MDEF”resources, and key filters are
“Keyƒ” resources. Information about writing your own forms, in C or Pascal,
is available in a separate document.
287

288

Chapter 13: Window Items

Boxes
Boxes

Boxes are rectangular graphic objects used in windows principally to enclose
groups of related objects or for artistic effects.

The pen pattern, pen size, and pen color properties determine the
pattern, thickness, and color of a box’s outline. Although the background of
each newly-created box is transparent, its fill pattern and fill
color properties may be set to specify a pattern and color for its
background.

The corners of a box can be rounded by setting the corners property.

If the title property of a box is set to a non-empty string, the title text is
displayed within the upper side of the box. When there is not enough space to
display the entire text of a title, the text is truncated and an ellipsis added.

A box can be made into a scrolling pane by setting its scrollable
property to true. A scrolling pane is like the scrolling area of a textbox,
except that the area can contain other window items.

Properties of Boxes
Boxes have the properties shown here in addition to several properties they
have in common with most or all window items; see the section, “Properties
Common to All Window Items,” at the beginning of this chapter.

corners

The diameters of the ovals that define the corners of the box.

Value Class

list of integer point {horizontal, vertical}

Chapter 13: Window Items

Boxes
Examples

Notes

➤ The corners property is expressed as horizontal and vertical diameters of
ovals that would fit into the corners of the box.

➤ If the corner diameters are set to large numbers, a rectangular box becomes
oval, while a square box becomes circular.

➤ The corners of a standard push button are {8, 8}.

➤ The corners property defaults to {0, 0}—square corners.

fill pattern

Pattern with which a box’s background is filled.

Value Class

Examples

Notes

➤ The Fill Pattern popup of the Properties popup in the Property Bar displays
the entire pattern table.

➤ Color pattern (ppat) resources are imported into a project in the Artwork
View of the Project Window. A segment of each is displayed in the Fill
Pattern popup.

➤ The default fill pattern is none.

constant white / black / gray / dark gray / light gray
/ none

integer index to a pattern in the pattern table, or id
of a color pattern (ppat) in the project

copy the corners of box 3 to {hDiam, vDiam}
set the corners of box “boxSlightlyRounded” to {8,8}
set the corners of box “boxModeratelyRounded” to {16,16}
set the corners of box “boxCircular” to {999,999}

copy the fill pattern of theObj to itsFill
set the fill pattern of box “boxSomber” to dark gray
289

290

Chapter 13: Window Items

Boxes
➤ If the fill pattern of a box is none and you set the fill color to
a color other than white, fill pattern is automatically changed to
white so that the fill color becomes visible.

justification

Alignment of the title within the top line of the box.

Value Class

Examples

Notes

➤ The justification defaults to left (but there is no default title).

pen pattern

Pattern with which a box’s outline will be drawn.

Value Class

Examples

Notes

➤ The Pen Pattern popup of the Properties popup in the Property Bar displays
the entire pattern table.

constant left / right / center

constant white / black / gray / dark gray / light gray /
raised / inset

integer index to a pattern in the pattern table, or id
of a color pattern (ppat) in the project

set the justification of box “boxPrefs” to right

copy the pen pattern of theObj to itsPenPat
set the pen pattern of box 3 of window 5 to dark gray
set the pen pattern of box “boxFrame” to inset

Chapter 13: Window Items

Boxes
➤ Color pattern (ppat) resources are imported into a project in the Artwork
View of the Project Window. A segment of each is displayed in the Pen
Pattern popup.

➤ The raised and inset pen patterns produce 3-D effects of shadow and
highlight. The current pen color is used for the shadow, while the
highlight is white.

➤ By default, pen pattern is black.

pen size

Line thickness of the box’s border.

Value Class

Examples

Notes

➤ The Pen Size popup of the Properties popup in the Property Bar offers pen
sizes up to {4, 4}, but other values can be set by a script.

➤ The default pen size is {1, 1}.

scroll

Distance that the content of a scrollable box has been scrolled.

Value Class

Examples

list of integer point {penWidth, penHeight}

list of integer point {horizAmount, vertAmount}

copy the pen size of theObj to {penWid, penHt}
copy the pen size of box “Nib” of window “Styles” to currentpen
set the pen size of box 3 of window 7 to {2,2}

copy the scroll of theObj to {hPos, vPos}
set the scroll of box “boxPrefs” to page2Position
291

292

Chapter 13: Window Items

Boxes
Notes

➤ The scroll property is measured in pixels. It is {0,0} if the
scrollable property is false.

➤ Setting the scroll property causes the box to scroll, and the scroll bars
to adjust accordingly.

➤ Setting the scroll property does not cause a scrolled message to be
sent to the box; a script can do that explicitly if necessary.

➤ A box whose scrollable property is true behaves as a scrolling pane.
See the discussion of scrolling panes, below.

scrollable

Does the box have scroll bars?

Value Class

boolean

Examples

Notes

➤ A box whose scrollable property is true behaves as a scrolling pane.
See the discussion of scrolling panes, below.

➤ When the scrollable property is set to true, the box becomes 15
pixels wider and taller; it becomes 15 pixels narrower and shorter when the
scrollable property is set to false.

➤ When the value of scrollable is false, the box has no scroll bars, and
the contents cannot be scrolled by any means. The value of its scroll
property is {0, 0}.

➤ Scrollable defaults to false.

set itemScrollable to scrollable of theObj
set scrollable of box “boxDescription” of window “Order Entry” to false

Chapter 13: Window Items

Boxes
title

The text displayed in the top line of a box.

Value Class

string

Examples

Note

➤ The default title of a box is the null string, which does not display.

Box Command and Event Messages
This section describes the only event message that is sent specifically to
boxes.

Boxes can also receive and handle several messages that are sent to most or
all window items; see the section, “Window Item Command and Event
Messages,” above.

scrolled

Event message sent when the box is scrolled with a scrollbar.

Parameters

Example

Notes

➤ A box whose scrollable property is true behaves as a scrolling pane.
See the discussion of scrolling panes, below.

copy the title of theObj itsTitle
set title of box “boxPrefs” of window “Instructions” to “Current Preferences”

(direct) reference the box

on scrolled theObj
 copy scroll of theObj to newscroll
set scroll of box “boxToys” to newscroll

end scrolled
293

294

Chapter 13: Window Items

Boxes
➤ Setting the scroll from a script does not cause the scrolled message
to be sent; send a scrolled message, if needed.

➤ Two or more boxes can be made to scroll in parallel by copying the
scroll property of each one to the others when the scrolled message is
received.

Scrolling Panes
A scrolling pane is a box whose scrollable property is set to true. (See
the scroll and scrollable properties and the scrolled message for
boxes.)

A scrolling pane “encloses” all the window items whose indices are less than
that of the box itself. These window items will disappear if they lie outside
the bounds of the box, but will become visible within the bounds of the box
when the box is scrolled in their original directions.

Scrolling a scrolling pane actually changes the coordinates of the window
items it contains; this is true both when playing or running the window. If a
scrolling pane is scrolled while playing a window, and the window is then put
into edit mode, the enclosed window items will be moved from their original
positions.

There is a scrolling pane example among the Feature Highlights that come
with FaceSpan.

Chapter 13: Window Items

Checkboxes
Checkboxes

Checkboxes are used to present options to the application user. Each option
is either in effect (the checkbox is checked) or not (the checkbox is not
checked). When a checkbox is clicked, FaceSpan automatically changes its
hilite property to the opposite of its previous value, then sends it a
hilited message.

Properties of Checkboxes
Checkboxes have the properties shown here in addition to several properties
they have in common with most or all window items; see the section,
“Properties Common to All Window Items,” at the beginning of this chapter.

form

The name of a form definition resource.

Value Class

Examples

Notes

➤ The form of a checkbox usually is set in edit mode.

➤ The default standard form for a checkbox (a resource of type CDEF) is built
into FaceSpan, and has the value standard.

➤ Optional button forms can be imported into a project. These can support the
display of icons and pictures, and have a variety of other features.

➤ A form might require the use of the format property.

constant standard standard checkbox

string see notes

set the form of theObj to “latch”
295

296

Chapter 13: Window Items

Checkboxes
➤ To see basic documentation for a form, select its name in the Forms View
of the Project Window, then click the Open button.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

format

A string of parameters for use by a form definition resource.

Value Class

string

Examples

Notes

➤ To see basic documentation for using the format property with a given
form, first assign the form to the window item, then choose the format
property from the Properties popup in the Property Bar.

➤ Some forms do not require the use of the format property.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

highlight

Same as the hilite property of a checkbox.

hilite

Is the checkbox hilited—that is, does it display a check?

Value Class

boolean

Examples

set the format of window item 3 to theFormatString

copy the hilite of window item 2 to isChecked
set the hilite of checkbox “chkSelfRunning” to true

Chapter 13: Window Items

Checkboxes
Notes

➤ The hilite of a checkbox is set before the hilited message is sent to
it.

➤ Setting the hilite property of a checkbox does not send a hilited
message; a script can send the hilited message if necessary.

title

The text displayed by the checkbox.

Value Class

string

Examples

Notes

➤ If a script sets the title of a checkbox, it might also need to tell the
checkbox to adjust size to fit the title.

➤ The title of a checkbox defaults to “Checkbox.”

Checkbox Command and Event Messages
This section describes the only event message that is sent specifically to
checkboxes.

Checkboxes can also receive and handle several messages that are sent to
most or all window items; see the section, “Window Item Command and
Event Messages,” above.

hilited

Event message sent when the checkbox is clicked.

Parameters

copy the title of theObj to itsTitle
set the title of checkbox 3 of window “Instructions” to “Section 3"

(direct) reference the checkbox
297

298

Chapter 13: Window Items

Checkboxes
Examples

Notes

➤ A checkbox receives a hilited message when it becomes checked and
when it becomes unchecked. The hilite property value is set before the
hilited message is sent.

➤ Setting the hilite property of a checkbox does not send a hilited
message; a script can send the hilited message if necessary.

property footnotes:false
on hilited of theObj

set footnotes to highlight of theObj
end hilited

Chapter 13: Window Items

Gauges
Gauges

Gauges are objects such as scroll bars and progress indicators.

The form property determines the type of gauge object that will be
displayed.

The step and leap properties determine the line and page values by which
a gauge can be adjusted.

The minimum and maximum properties determine the extremes to which a
gauge can be adjusted.

Properties of Gauges
Gauges have the properties shown here in addition to several properties they
have in common with most or all window items; see the section, “Properties
Common to All Window Items,” at the beginning of this chapter.

form

The form of the gauge as defined by a form definition resource.

Value Class

Examples

Notes

➤ The default standard form for a gauge (a resource of type CDEF) is built
into FaceSpan; it is a standard scrollbar, and has the value standard.

constant standard a standard scroll bar

string see notes

copy the form of theObj to formName
set the form of gauge “gagHowGoesIt” to “Progress”
299

300

Chapter 13: Window Items

Gauges
➤ Optional gauge forms can be imported into a project. These can support the
display of icons and pictures, and have a variety of other features.

➤ A form might require the use of the format property.

➤ To see basic documentation for a form, select its name in the Forms View
of the Project Window, then click the Open button.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

format

A string of parameters for use by a form definition resource.

Value Class

string

Examples

Notes

➤ To see basic documentation for using the format property with a given
form, first assign the form to the window item, then choose Format property
from the Properties popup in the Property Bar.

➤ Some forms do not require the use of the format property.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

leap

Amount by which the scroll changes when the gauge is scrolled by a “page.”

Value Class

integer

Examples

set the format of window item 3 to theFormatString

copy the leap of theObj to leapAmount
set the leap of gauge “gagMycroller” to 25

Chapter 13: Window Items

Gauges
Notes

➤ A standard scrollbar gauge is scrolled by a “page” by clicking in the gray
area above or below the slider.

➤ If you set the leap property, you should also set the maximum, minimum,
and step properties, which default to 10, 100, 0 and 1, respectively.

➤ The default leap for the standard scrollbar gauge is 10.

maximum

The maximum possible value of a gauge’s scroll (or setting) property.

Value Class

integer

Examples

Notes

➤ If you set the maximum property, you should also set the leap, minimum,
and step properties.

➤ The default maximum for the standard scrollbar gauge is 100.

minimum

The minimum possible value of a gauge’s scroll property.

Value Class

integer

Examples

copy the maximum of theObj to scrollMax
set the maximum of gauge “gogMyScroll” to 500
set the scroll of gauge “listscroll” to maximum of gauge “listscroll”

copy the minimum of theObj to scrollMin
set the minimum of gauge “gogMyScroll” to 100
set the scroll of gauge “listscroll” to the minimum of gauge “listscroll”
301

302

Chapter 13: Window Items

Gauges
Notes

➤ If you set the minimum property, you should also set the leap, maximum,
and step properties.

➤ The default minimum of the standard scrollbar gauge is 0.

scroll

The amount that the gauge has been scrolled; its setting.

Value Class

integer

Examples

Notes

➤ The scroll property is the current setting of the gauge; it can be any
integral value between the values of the minimum and maximum properties.

➤ If a script sets the scroll, the gauge automatically moves to display the
new value.

setting

Same as the scroll property of a gauge.

step

Amount by which the gauge’s scroll (or setting) property will change when
the gauge is incremented or decremented by a “line.”

Value Class

integer

Examples

copy the scroll of theObj to scrollAmt
set the scroll of gauge “listscroll” to 27

copy the step of theObj to scrollStep
set the step of gauge “listscroll”to 5

Chapter 13: Window Items

Gauges
Notes

➤ A standard scrollbar gauge is scrolled by a “line” by clicking the up-arrow
or down-arrow.

➤ The default step of the standard scrollbar gauge is 1.

➤ If you set the step property, you should also set the leap, maximum, and
minimum properties.

title

The displayed text of the gauge.

Value Class

string

Examples

Note

➤ A standard scrollbar gauge does not display its title; other forms might do
so.

Gauge Command and Event Messages
This section describes the only event message that is sent specifically to
gauges.

Gauges can also receive and handle several messages that are sent to most or
all window items; see the section, “Window Item Command and Event
Messages,” above.

scrolled

Event message sent when a gauge is scrolled interactively.

Parameters

copy the title of theObj to gagTitle
set the title of gauge “gagNewProgress” to “Sorting...”

(direct) reference the listbox
303

304

Chapter 13: Window Items

Gauges
Example

Note

➤ The scrolled message is not sent to the gauge when its scroll is
changed by a script; a script can send the scrolled message if necessary.

on scrolled theObj
copy the scroll of theObj to newscroll
set the scroll of gauges 2 thru 5 to newscroll --scroll all in tandem

end scrolled

Chapter 13: Window Items

Graphic Lines
Graphic Lines

Graphic lines are graphic objects used in windows principally to create
divisions between objects or object groups.

The pen pattern, pen color, and pen size properties determine the
pattern, color, and thickness of a graphic line.

Properties of Graphic Lines
Graphic lines have the properties shown here in addition to several properties
they have in common with most or all window items; see the section,
“Properties Common to All Window Items,” at the beginning of this chapter.

pen pattern

The pattern with which a graphic line is drawn.

Value Class

Examples

Notes

➤ The Pen Pattern popup of the Properties popup in the Property Bar displays
the entire pattern table.

➤ Color pattern (ppat) resources are imported into a project in the Artwork
View of the Project Window.

➤ By default, pen pattern is black.

constant white / black / gray / dark gray / light gray / raised / inset

integer index to a pattern in the pattern table, or id of a color pattern
(ppat) in the project

copy the pen pattern of theObj to itsPenPat
set the pen pattern of graphic line 3 of window 5 to dark gray
305

306

Chapter 13: Window Items

Graphic Lines
pen size

The graphic line thickness in pixels.

Value Class

Examples

Notes

➤ The pen size of a graphic line needs only a height value if the graphic
line is horizontal, and only a width value otherwise.

➤ The Pen Size popup of the Properties popup in the Property Bar offers pen
sizes up to 4 pixels, but other values can be set by a script.

➤ The default pen size is {0, 1}, for a horizontal graphic line, or {1, 0},
for a vertical graphic line.

Graphic Line Command and Event Messages
There are no command or event messages sent specifically to graphic lines.
However, graphic lines can receive and handle several messages that are sent
to most or all window items; see the section, “Window Item Command and
Event Messages,” above.

list of integer point {penWidth, penHeight}

copy the penSize of theObj to {penWid, penHt}
set penSize of graphic line 3 of window 7 to {2,2}

Chapter 13: Window Items

Icons
Icons

Icons are containers in which ICON (black and white icon), ICN# (Finder
icon family), and cicn (color icon) resources from a project’s artwork
resources can be displayed.

The hilite rule property permits icons to be used as push buttons, radio
buttons, or checkboxes when clicked with the mouse.

The hilite style property permits icons to be hilited in a variety of
styles.

Icons can be scaled to any size.

Properties of Icons
Icons have the properties shown here in addition to several properties they
have in common with most or all window items; see the section, “Properties
Common to All Window Items,” at the beginning of this chapter.

artwork

The project artwork resource displayed by an icon.

Value Class

Examples

resource info

constant none

copy the artwork of theObj to {type:itsType, name:itsName, id:itsID}
set the artwork of icon “icnArtist” to {type:”cicn”,id:5003,name:”Tom”}
307

308

Chapter 13: Window Items

Icons
Notes

➤ Although the artwork property can be set under most circumstances by
specifying only a name or id, it is more reliable to cite all three properties
of the resource info class to avoid any confusion caused by two or more art
resources having the same name.

➤ If the artwork property is set to none, the icon becomes transparent and
may be positioned over another window item for use as a transparent button
with user-definable highlighting behavior. For example, if you use such an
object to cover a textbox that has several lines of text, when the user clicks it,
the whole textbox can appear to highlight according to the icon’s
highlight style and selection rule.

➤ For information about the resource info class, see Chapter 15:
“Special Artwork and Text Style Classes.”

highlight

The term highlight can be used interchangeably with the term hilite;
in fact, every use of highlight is changed to hilite when a script is
compiled.

hilite

Is the icon highlighted?

Value Class

boolean

Examples

Notes

➤ The hilite property of an icon is always false if its hilite rule
is none.

➤ The highlighting sequence of an icon, and the effects of hilited
messages to it, are just like the behavior of the button it is set to imitate. See
the hilite rule property.

➤ By default, hilite is false, since the default hilite rule is none.

copy the hilite of theObj to itsHilite
set the hilite of icon “icnFlag” of window “Salutes Itself” to true

Chapter 13: Window Items

Icons
hilite artwork

The artwork used when highlighting a button having the by exchange hilite
style.

Value Class

Example

Notes

➤ The hilite artwork applies only to icons with the by exchange
value of the hilite style.

➤ Instead of changing the appearance of the normal icon, the hilite
artwork is displayed; that is, the two icons are exchanged while the icon’s
hilite is true.

➤ Since the default hilite style is none, the default hilite
artwork is none.

hilite rule

The kind of button the icon imitates.

Value Class

Examples

resource info

constant none

constant none / as push button / as radio button / as checkbox

set the hilite artwork of icon “icnLogo” to {name:”FaceSpan”, id:5000}

set the hilite rule of icon “icnTaxOption” to as checkbox
309

310

Chapter 13: Window Items

Icons
Notes

ÿ➤ The hilite rule of an icon determines the kind of button it imitates.

➤ The highlighting sequence of an icon, and the use of hilited messages
to it, is just like the behavior of the button it is set to imitate.

➤ By default, hilite rule is none.

hilite style

The visual change in the icon when it is clicked.

Value Class

Examples

Notes

➤ You can make all the areas of a given color highlight, if you wish: set the
fill color property of the icon to that color.

constant none icon does not highlight when clicked

by hilite white areas of clicked icon are overlain with the
System highlight color (from the Color control panel)

by invert colors of clicked icon are inverted

by lasso colors of clicked icon are inverted within contours
that exclude the icon’s fill color

by frame clicked icon is surrounded by a frame

by sink clicked icon is surrounded by a frame indented by
one column of pixels on the left and one row of pixels
on the top

by exchange a different icon resource is used for the highlighted
icon

Standard icon is darkened in a manner similar to the Finder’s
icon hilting

copy the hilite style of theObj to itsStyle
set hilite style of icon 5 of window “Bugs” to by invert

Chapter 13: Window Items

Icons
➤ If the selection rule or hilite style is set to none, the icon
does not highlight or receive a hilited message when clicked.

➤ If the hilite rule is not none, but the hilite style is none, the
icon still acts like the designated button even though its appearance does not
change.

➤ By default, hilite style is none.

Icon Command and Event Messages
This section describes the only event message that is sent specifically to
icons.

Icons can also receive and handle several messages that are sent to most or all
window items; see the section, “Window Item Command and Event
Messages,” above.

hilited

Event message sent when an icon with a hilite rule is clicked.

Parameters

Examples

Note

➤ If the hilite rule is set to none, the icon does not receive hilited
messages.

(direct) reference the icon

on hilited theObj
copy name of theObj to thechoice
display dialog “You clicked icon “ & thechoice

end hilited
311

312

Chapter 13: Window Items

Labels
Labels

Labels are non-editable, one-line text objects used as titles for other window
items, headings for sections of windows, and general static text display.

The rectangular area bounding a label is transparent. When there is not
enough space to display the entire text of a label, the text is truncated and an
ellipsis added.

Labels lack many of the properties of textboxes, but are often more
convenient.

Properties of Labels
Labels have the properties shown here in addition to several properties they
have in common with most or all window items; see the section, “Properties
Common to All Window Items,” at the beginning of this chapter.

justification

Alignment of the title within the bounds of the label.

Value Class

Examples

Notes

➤ The justification property makes sense only if the bounds of the
label are wider than the title it displays.

➤ The default justification is left.

constant left / right / center

set the justification of label “lblHeader” to right

Chapter 13: Window Items

Labels
title

Text that is displayed as the label.

Value Class

string

Examples

Note

➤ The default title of a label is “Label.”

Label Command and Event Messages
There are no command and event messages sent specifically to labels. Labels
can, however, receive and handle several messages that are sent to most or all
window items; see the section, “Window Item Command and Event
Messages,” above.

copy the title of theObj to itsTitle
set the title of label “lblSection” of window “Instructions” to “Section 3"
313

314

Chapter 13: Window Items

Listboxes
Listboxes

A listbox displays non-editable text and/or artwork resources in one or more
columns.

When there is not enough space to display the entire text of a listbox item, the
text is truncated and an ellipsis added.

One or several items can be selected in various ways.

The contents property of a listbox describes the items that are to be
displayed.

The optional form property of a listbox can customize the data and display
formats of the listbox.

Individual items of the contents of listboxes may be accessed by a script using
the listbox item class reference described after this section.

Properties of Listboxes
Listboxes have the properties shown here in addition to several properties
they have in common with most or all window items; see the section,
“Properties Common to All Window Items,” at the beginning of this chapter.

column count

The number of columns of entries displayed in the listbox.

Value Class

integer

Examples

copy the column count of theObj to numCols
set the column count of listbox “lstCheese” of window “Dairy Goods to 3

Chapter 13: Window Items

Listboxes
Notes

➤ Listbox items (entries) are assigned as a single list, not as a list of lists. The
given entries are simply displayed across and down. For example, if the
listbox has a column count of 3, the first 3 listbox items are displayed in
the first row, and so on.

➤ All listbox columns are of equal width.

➤ If you resize a multiple-column list, its width is resized in increments of the
number of columns. For example, the width of a three-column list will change
in increments of three pixels.

➤ By default, column count is 1, and the contents is “Listbox.”

doubleclick item

The button that receives a hilited message when any item of the listbox is
double-clicked.

Value Class

Examples

Notes

➤ The doubleclick item must be a push button.

➤ The push button’s visible property must be true, but it can be located
outside the window if you do not want it to be seen.

➤ If a listbox has a doubleclick item, double-clicking on the listbox
itself is just like clicking the button.

➤ By default, doubleclick item is none.

reference

constant none

copy the doubleclick item of theObj to theDblItem
set the doubleclick item of listbox “lstFormats” to push button “pshOK”
315

316

Chapter 13: Window Items

Listboxes
form

The form of the listbox as defined by a form definition resource.

Value Class

Examples

Notes

➤ The default standard form for listboxes is built into FaceSpan. It supports
only the display of text.

➤ Optional listbox forms (resources of type LDEF) can be imported into a
project in the Forms View of the Project Window. These can support the
display of icons and pictures, and have a variety of other features.

➤ A form might require the use of the format property.

➤ Many listbox forms require that listbox items themselves have special
formats.

➤ To see basic documentation for a form, select its name in the Forms View
of the Project Window, then click the Open button.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

format

A string of parameters for use by a form definition resource.

Value Class

string

constant standard (see the notes)

string see notes

copy the form of theObj to formName

set the form of listbox “lstGallery” to “ListOfNamedArt”
set form of listbox 12 to standard

Chapter 13: Window Items

Listboxes
Examples

Notes

➤ To see basic documentation for using the format property with a given
form, first assign the form to the window item, then choose Format from the
Properties popup in the Property Bar.

➤ Some forms do not require the use of the format property.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

key scrollable

Can the listbox be scrolled from the keyboard?

Value Class

boolean

Examples

➤ If the key scrollable property of a listbox is true, the listbox can receive
the focus just as an editable textbox does. Whenever the listbox has the focus,
it responds to scrolling commands from the keyboard.

➤ You can scroll the list with the arrow keys.

➤ If the list is in alphabetical order, you can scroll the list by typing letters.
The list scrolls to the entry that starts with (or is alphabetically nearest) the
prefix you type.

➤ To suspend the normal time limit for scrolling by typing letters, hold down
the Shift key while typing. (This is useful for those who are unable to type
quickly.)

➤ When the listbox has the focus, it has a bold outline around it. This can be
suppressed; see the margin property.

➤ The default value of key scrollable is false.

set the format of window item 3 to theFormatString

copy the key scrollable of theObj to canScroll
set the key scrollable of listbox “lstToDo” of window “To Do Lists” to true
317

318

Chapter 13: Window Items

Listboxes
 margin

The space between the border of a scrollable listbox and its bold focus
outline.

Value Class

integer

Examples

Notes

➤ A scrollable listbox acquires a bold selection outline when it has the focus.

➤ The default margin is 3.

➤ The bold selection outline can be suppressed by setting the margin to 0.

row count

Number of rows of entries contained in the listbox.

Value Class

integer

Examples

Notes

➤ The value of row count is automatically updated as you create or delete
listbox items.

➤ The number of rows is not the same as the number of entries. It is affected
by the column count, and is the number of rows that can actually be
counted as you scroll through the list.

set the margin of listbox “lstPartners” to 0

get row count of theObj
set totalRows to row count of listbox 3 of window 6
set row count of listbox 3 of window “Categories” to 4

Chapter 13: Window Items

Listboxes
➤ If you set the row count property of a listbox to a number less than the
current number of rows in the listbox, the contents of the listbox is truncated
after the specified number of rows; that is, the remaining listbox items are
lost.

scroll

The number of rows that the content of a listbox has been scrolled.

Value Class

integer

Examples

Notes

➤ When the value of scrollable is false, the listbox still can be scrolled
by clicking an entry and dragging up or down, so the scroll property still
is meaningful.

➤ The scroll is 0 when the listbox is displaying the first item.

scrollable

Does the listbox have a scrollbar?

Value Class

boolean

Examples

Notes

➤ When the value of scrollable is false, the listbox still can be scrolled
by clicking an entry and dragging up or down.

copy the scroll of theObj to numRowsDown
set the scroll of listbox “lstGroceries” of window “To Do” to 12

copy the scrollable of theObj to itCanScroll
set scrollable of listbox “lstLanthanides” of window “Periodic Table” to false
319

320

Chapter 13: Window Items

Listboxes
➤ When the scrollable property is set to true, the width of the listbox
increases by 15 pixels; when set to false, the width decreases by 15
pixels.

➤ Scrollable is true by default.

selection

The indices of the listbox entries that are selected.

Value Class

Examples

Notes

➤ If no listbox items are selected, the selection is the empty list, {}. You
can deselect all the listbox items by setting the selection to {}.

➤ To select a certain item with a script, set the selection to a list
containing the item’s index or its title.

➤ If the listbox is not full, the selection can be {}, since the listbox gets
a selection made message even when the application user’s click
deselects all entries.

➤ To get or replace the text of a selection within a listbox, use this reference
form: contents of the selection of listbox “whatever.” This
refers to a list of strings, each string being the contents of a selected listbox
item.

➤ If you replace the contents of the selection, you can use a string
in which the text of each entry is delimited with the return character. Thus,
you can insert one or more entries at once.

➤ You can set the selection to one or more items with a list of their titles,
as shown in the last example.

list of integer {selectedItem, selectedItem,…}

copy the selection of listbox “lstBase Metals” of window “Alchemy” to selList
set the selection of listbox “lstBase Metals” of window “Alchemy” to {2,3}
set the selection of listbox “lstLanthanides” to {}
set the selection of listbox “lstLetters” to {“beta”, “zeta”, “kappa”}

Chapter 13: Window Items

Listboxes
selection rule

The number of listbox items that can be selected, and how selection is done.

Value Class

Examples

Note

➤ The default value of selection rule is allow any. This means that
the selected items can be discontiguous.

Listbox Command and Event Messages
This section describes command and event messages that are sent specifically
to listboxes.

Listboxes can also receive and handle several messages that are sent to most
or all window items; see the section, “Window Item Command and Event
Messages,” above.

clear

Edit menu command: Clears the contents of the selection of a listbox.

Parameters

constant allow single only one item can be selected

allow any a discontiguous group of items can be selected by
holding down the Command key while clicking

allow group a contiguous group of items can be selected by
dragging

allow dragging items can be dragged to reorganize a listbox

none no selection can be made

copy the selection rule of theObj to itsRule
set the selection rule of listbox “lstTitles” of window “CDs” to allow any

(direct) reference the listbox
321

322

Chapter 13: Window Items

Listboxes
Examples

copy

Edit menu command: Copies the contents of the selection of a listbox to the
Clipboard.

Parameters

Examples

focus received

Event message sent when a listbox gets the focus.

Parameters

Example

Notes

➤ A listbox receives the focus when the application user clicks the listbox or
tabs to it, or when a script sets the focus property of the window to the
listbox.

➤ The focus received message is sent only to listboxes that are key
scrollable.

(direct) reference the listbox

(direct) reference the listbox

clear listbox “lstUtensils” of window “Morgue”

copy listbox “lstUtensils” of window “Morgue”

on focus received theObj
copy name of theObj to thename
set title of label “lblActiveItem” to thename

end focus received

Chapter 13: Window Items

Listboxes
keystroke

Event message sent when a key is pressed while the listbox has the focus.

Parameters

Notes

➤ The keystroke message is received by a listbox only if it is key
scrollable.

➤ The keystroke message may also be sent by a script to simulate pressing
a key.

➤ For more information and an example of a keystroke handler, see the
keystroke message discussion for textboxes later in this chapter.

scrolled

Event message sent when a listbox is scrolled.

Parameters

Example

(direct) reference the listbox

key long integer the key code/character

[option down] boolean is Option key down?

[shift down] boolean is Shift key down?

[command down] boolean is Command key down?

[control down] boolean is Control key down?

[ticks] integer time (see notes)

(direct) reference the listbox

on scrolled theObj
copy scroll of theObj to newscroll
set scroll of window items 2 thru 5 to newscroll

end scrolled
323

324

Chapter 13: Window Items

Listboxes
Notes

➤ A listbox can be scrolled with its scrollbar (its scrollable property is
true), or by clicking and dragging downward or upward.

➤ The scroll property tells how far down, in rows, the listbox has been
scrolled.

selection made

Event message sent when the user selects a listbox item.

Parameters

Example

Notes

➤ The selection property tells which listbox items have been selected.

➤ If the listbox is not full, the selection can be {}, since the listbox gets
a selection made message even when the application user’s click
deselects all entries.

(direct) reference the listbox

on selection made theObj
copy the contents of the selection of theObj to theSelection --a list
copy item 1 of theSelection to theSelection --a string
set the contents of label “lblSelection” to theSelection

end selection made

Chapter 13: Window Items

Listbox items
Listbox items

Individual items of the contents of listboxes may be specified using the
listbox item class reference. When there is not enough space to display the
entire text of a listbox item, the text is truncated and an ellipsis added.

Properties of Listbox Items
Listbox items have a very limited collection of properties, just those needed
to refer to them and to get or set their contents. They are not actually “window
items.”

contents

The text of a listbox item.

Value Class

string

Examples

Notes

➤ The contents is the text of the entry only if the listbox uses the standard
form. The contents can be a description of something to display, such as
artwork, if the form is not standard.

➤ The contents property of a listbox item is the same as its name property.

index

The index of the listbox item within its listbox.

Value Class

integer

copy the contents of listbox item i of listbox “lstToDo” to whatNow
set the contents of listbox item i of listbox “lstToDo” to whatNow & “done”
325

326

Chapter 13: Window Items

Listbox items
Examples

Note

➤ Listbox items are indexed sequentially from top to bottom within their
listboxes. (Left to right, and top to bottom in listboxes with two or more
columns.)

name

Same as the contents property of a listbox item.

copy the index of listbox item “Vegetables” of listbox “lstFoods” to veggieNum
--Can change the contents, and from now on use the index:
set the name of listbox item veggieNum of listbox “lstFoods” to vegInFrench

Chapter 13: Window Items

Movies
Movies

Movies are containers in which QuickTime™ movie files can be displayed.

FaceSpan displays movies with or without a standard QuickTime™
controller, and provides various properties for the control of playing speed
and volume.

The editable property determines whether a movie is selectable and
responsive to Edit menu commands.

Properties of Movies
Movies have the properties shown here in addition to several properties they
have in common with most or all window items; see the section, “Properties
Common to All Window Items,” at the beginning of this chapter.

artwork

The QuickTime movie file displayed by a movie.

Value Class

Examples

Notes

➤ Movie artwork is not copied into the project, so a movie object will not
display any artwork if the artwork cannot be found when the project is run.

alias reference to file containing the movie

constant none

copy (the artwork of theObj) as string to fullPathName
set artwork of movie 1 to alias “Centris HD:Bijou Folder:Circling Apple”
327

328

Chapter 13: Window Items

Movies
➤ If the application is distributed without movies, set the artwork of the
movie to none. This will prevent prompts for movie files or disk volumes
when the application is run on another computer.

editable

Are the frames of the movie selectable and editable?

Value Class

boolean

Examples

Notes

➤ If editable is true, the movie can receive the focus. It receives the
focus when a user tabs to it or clicks it, or when a script sets the window’s
focus to the movie.

➤ A movie with the focus has a bold outline around it. This can be suppressed;
see the margin property.

➤ Editable is false by default.

elapsed time

The position to which a movie has been advanced.

Value Class

integer

Examples

Notes

➤ The elapsed time property is expressed in units of the movie’s time
scale, which typically is 600.

copy the editable of theObj to canDo
set editable of movie 3 of window “Locked” to false

copy the elapsed time of movie “movMonsters” to timeSoFar
set the elapsed time of movie “movOverRover” to 2000

Chapter 13: Window Items

Movies
➤ The total time contributed by each movie frame is not necessarily the same
for all frames. Therefore, setting the elapsed time to half the total does
not necessarily display the middle frame.

➤ The elapsed time property is the same as the scroll property.

locked

The inverse of the editable property.

margin

The space between the border of an editable movie and its bold focus outline.

Value Class

integer

Examples

Notes

➤ An editable movie acquires a bold selection outline when it has the
focus.

➤ The bold selection outline can be suppressed by setting the margin to 0.

➤ The default margin is 3.

repeating

Will the movie automatically replay when it gets to the end?

Value Class

boolean

Examples

set the margin of movie “movTheWorld” to 0

copy the repeating of theObj to itRepeats
set the repeating of movie “movLoopingTiresomely” to true
329

330

Chapter 13: Window Items

Movies
Note

➤ By default, repeating is false.

scroll

The scroll property is the same as the elapsed time property.

scrollable

Does the movie have a standard QuickTime controller?

Value Class

boolean

Examples

Notes

➤ The standard QuickTime controller lets the application user play, stop and
scroll the movie.

➤ When the value of scrollable is false, the controller is missing, but
the movie still can be played and otherwise controlled by scripts.

➤ The default value of scrollable is true.

selection

The portion of a movie that is selected.

Value Class

Examples

list of integer {startingScroll, endingScroll}

copy the scrollable of theObj to itScrolls
set the scrollable of movie “Porcupine” of window “Balloon Factory” to false

copy the selection of theObj to {startTime, endTime}
set the selection of movie “Vertigo” of window “Alfred” to {1270, 1830}

Chapter 13: Window Items

Movies
Note

➤ The two values in the selection represent starting and ending elapsed
times. See the discussion of the elapsed time property.

speed

Rate at which a movie is played.

Value Class

integer

Examples

Notes

➤ The speed is expressed as a percentage of the movie’s normal speed.

➤ The speed property is read-only, but it is set indirectly as a parameter of
the play command.

➤ Speed defaults to 100 (“”) of the normal speed).

time scale

The standard playing rate of a movie.

Value Class

integer

Examples

copy the speed of theObj to itsSpeed
play movie “Sleep” speed 25

get time scale of theObj
copy time scale of movie 2 of window “TimeLapse” to movietimescale
set title of label “playspeed” to movietimescale
331

332

Chapter 13: Window Items

Movies
Notes

➤ The standard time scale is 600 (meaning 600 units per second).

➤ Both the selection property and the elapsed time property are
expressed in terms of this scale.

➤ Time scale is a read-only property.

volume

Loudness level at which a movie will be played.

Value Class

integer

Examples

Notes

➤ The volume is expressed as a percentage of the movie’s normal volume.
The normal volume was set by the person who created the movie.

➤ The default volume is 100 (% of the normal volume).

Movie Command and Event Messages
This section describes command and event messages that are sent specifically
to movies.

Movies can also receive and handle several messages that are sent to most or
all window items; see the section, “Window Item Command and Event
Messages,” above.

clear

Edit menu command: Deletes the current selection of the movie’s content.

Parameters

copy the volume of movie “Mumbling” to itsVol
set itsVol to itsVol/2
set the volume of movie “Mumbling” to itsVol

(direct) reference the movie to be edited

Chapter 13: Window Items

Movies
Examples

Note

➤ If the movie is the window item that currently has the focus, the clear
command without a direct parameter applies to that movie.

copy

Edit menu command: Copies the current selection of the movie’s content to
the Clipboard.

Parameters

Examples

Note

➤ If the movie is the window item that currently has the focus, the copy
command without a direct parameter applies to that movie.

cut

Edit menu command: Copies the current selection of the movie’s content to
the Clipboard, then deletes it from the movie’s content.

Parameters

Examples

(direct) reference the movie to be edited

(direct) reference the movie to be edited

clear movie “movBijou”
clear movie 1 of window “Cutting Room Floor”

copy movie “movBijou”
copy movie 1 of window “Homage”

cut movie “movBijou”
cut movie 1 of window “Rushes”
333

334

Chapter 13: Window Items

Movies
Note

➤ If the movie is the window item that currently has the focus, the cut
command without a direct parameter applies to that movie.

focus received

Event message sent when a movie gets the focus.

Parameters

Example

Notes

➤ A movie receives the focus when the application user clicks the movie or
tabs to it, or when a script sets the focus of the window to the movie.

➤ The focus received message is sent only to movies that are
editable.

paste

Edit menu command: Pastes the current contents of the Clipboard into the
movie’s content at the insertion point.

Parameters

Examples

(direct) reference the movie

(direct) reference the movie to be edited

on focus received theObj
global revertFrames
copy contents of theObj to revertFrames

end focus received

paste theObj
paste movie 1 of window “Montage”

Chapter 13: Window Items

Movies
Notes

➤ If the movie is the window item that currently has the focus, the paste
command without a direct parameter applies to that movie.

➤ If there is no movie in the Clipboard, nothing is pasted.

pause

Command to pause the movie.

Parameters

Examples

play

Command to start or resume a movie.

Parameters

Examples

(direct) reference the movie

(direct) reference the movie

[speed] integer percent of normal speed

pause movie 1 of window “VisitOurSnackbar”
--Resume the movie from its current scroll position:
play movie 1 of window “VisitOurSnackbar”

set the selection of movie “Tae Kwon Tofu” to {1200,1200} --food fight
scene
play movie “Tae Kwon Tofu” speed 50 --slow the action
play movie “Two-Handed Ty Ping” --plays at normal speed
335

336

Chapter 13: Window Items

Movies
Notes

➤ To restart a movie from the beginning, set its scroll (elapsed time)
property to 0.

➤ The speed is expressed as a percentage of the movie’s normal speed.

➤ Including the speed parameter in the play command is the only way to
set a movie’s speed property.

Chapter 13: Window Items

Pictboxes
Pictboxes

Pictboxes are containers in which pictures (PICTs) from the project’s artwork
resources, or the contents of PICT files, can be displayed.

A pictbox can simulate a button or an array of buttons. The number of buttons
it simulates is determined by its selection grid property, the kind of
button depends upon the selection rule, and the selection style
determines the appearance of each simulated button when it is clicked.

A pictbox that simulates a button gets a hilited message like a button,
while a pictbox divided into an array of buttons gets a selection made
message like a listbox.

Pictboxes can be horizontally and vertically scrollable, and receive
scrolled messages like a scrolling pane or textbox.

Pictboxes cannot be simultaneously scrollable and simulate buttons.

Properties of Pictboxes
Pictboxes have the properties shown here in addition to several properties
they have in common with most or all window items; see the section,
“Properties Common to All Window Items,” at the beginning of this chapter.

artwork

The picture resource or file displayed by the pictbox.

Value Class

resource info an artwork resource in the project

alias a PICT file

constant none
337

338

Chapter 13: Window Items

Pictboxes
Examples

Notes

➤ If the actual picture is smaller than the bounds of the pictbox item, it is
centered. If the actual picture is too big, it is scaled to fit. If the pictbox is
scrollable, and the actual picture is larger than the bounds, only a
portion of the image is visible, but other portions can be scrolled into view.

➤ You can set artwork by specifying only the name or the id. It is best,
however, to give values for all three properties of the resource info
class to make the specification entirely unambiguous.

➤ If you set the artwork to an alias to a PICT file, the picture will be
displayed immediately, and will remain as long as the window is open. The
alias is not persistent.

➤ If the artwork property is set to none, the pictbox becomes transparent
and may be positioned over another window item for use as a transparent
button with user-definable highlighting behavior. For example, if you use
such an object to cover a textbox that has several lines of text, when the user
clicks it, the whole textbox can appear to highlight according to the pictbox’s
highlight style and selection rule.

➤ For information about the resource info class, see Chapter 15:
“Special Artwork and Text Style Classes.”

highlight

Same as the hilite property of a pictbox.

hilite

Is the pictbox hilited (has it been clicked)?

Value Class

boolean

copy the artwork of theObj to {type:itsType, id:itsID, name:itsName}
set the artwork of pictbox 2 to alias “Macintosh HD:Desktop Folder:Logo”
set artwork of pictbox “picPortrait” to {type:”PICT”,id:5003,name:”El Cid”}

Chapter 13: Window Items

Pictboxes
Examples

Note

➤ The hilite property is meaningful only for ungridded pictboxs (pictboxs
whose selection grid is {1, 1}) that have a selection rule other
than none. Other wise, the hilite property is always false.

hilite rule

Same as the selection rule property of a pictbox.

hilite style

Same as the selection style property of a pictbox.

justification

Determines how the pictbox is aligned.

Value Class

Example

constant left aligns the picture to the top-left of the
pictbox.

center aligns the picture to the horizontal and
vertical center of the pictbox.

right aligns the picture to the bottom-right of
the pictbox.

copy the highlight of theObj to itsHilite
set the highlight of pictbox “picNick” of window “Lights On” to true

on hilited theObj
set justification of pictbox “picScaling” to left

end hilited
339

340

Chapter 13: Window Items

Pictboxes
scale

Controls the magnification or reduction of the image in the pictbox.

Value Class

integer

Example

Notes

➤ The scale is expressed as a magnification of the image’s original size. For
example, 100 is full-size, 200 is double size, etc.

➤ The constant standard, or value of 0, provides automatic scaling similar to
FaceSpan’s 2.0 version. It differs from the 2.0 version in that the image’s
aspect ratio (ratio of height to width) is now always respected so that images
will no longer be distorted. Please note that this will cause some pictures to
be displayed differently in 2.1 than in 2.0.

scroll

The distances that the content of a scrollable pictbox has been scrolled.

Value Class

Examples

Notes

➤ When the value of the scrollable property is false, the scroll
property is always {0, 0}.

➤ Setting the scroll property does not send the pictbox a scrolled
message; the message can be sent by a script, if necessary.

list of integer point {horizScroll, vertScroll}

set scale of pictbox “picNamel” to 50

copy the scroll of theObj to {theH, theV}
set the scroll of pictbox “Nude Descending a Staircase” to thebottom
set scroll of theObj to {100,150}

Chapter 13: Window Items

Pictboxes
scrollable

Can the pictbox be scrolled (does it have scroll bars)?

Value Class

boolean

Examples

Notes

➤ When the value of scrollable is false, the value of the scroll
property is always {0, 0}.

➤ When the scrollable property is set to true (usually in edit mode), the
pictbox becomes 17 pixels wider and 17 pixels higher to accommodate the
scroll bars. When the scrollable property is set to false, the pictbox
becomes 17 pixels narrower and shorter. (The value 17 includes a border that
is drawn around the pictbox.)

➤ Scrollable is false by default.

selection

A list of the indices of selected cells in a gridded pictbox.

Value Class

Examples

Notes

➤ Pictbox cells are indexed sequentially, in reading order (left to right and top
to bottom).

list of integer {cellIndex, cellIndex, …}

copy the scrollable of theObj to itIsScrolling
set the scrollable of pictbox “Jumbo” of ¬

window “Periodic Table of Elephants” to false

copy the selection of theObj to selList
set the selection of pictbox “picGold” of window “Alchemy” to {2,3}
set the selection of theObj to {} --deselect all cells
341

342

Chapter 13: Window Items

Pictboxes
➤ The selection is the empty list when no cells are selected.

➤ The selection is the empty list when the pictbox is not gridded.

➤ If the selection rule is as push button or as radio button,
then the selection is a list of one cell index.

➤ If the selection rule is as checkbox, then the selection can be the
empty list (none selected), a list of one, or a list of many indices.

selection grid

The numbers of rows and columns that divide the pictbox into selectable
cells.

Value Class

Examples

Notes

➤ The default value of the selection grid property (an “ungridded
pictbox”) is {1,1}.

➤ A pictbox whose selection grid property is {1, 1} can act as a single
button, and thus can receive a hilited message.

➤ Several pictboxes, each acting as a single radio button, will
automatically act in tandem if they have consecutive indices.

➤ A pictbox whose selection grid property is greater than {1, 1} can
act as an array of buttons, and thus can receive a selection made
message.

➤ If selection rule set to none, the pictbox will not receive a
hilited or selection made message when clicked.

➤ If selection style is set to none, the pictbox will not highlight when
clicked.

list of integer point {#OfColumns, #OfRows}

copy the selection grid of theObj to {numCols, numRows}
set the selection grid of pictbox “picOlympia” to {3,3}

Chapter 13: Window Items

Pictboxes
➤ The Selection Grid popup of the Properties menu of the Property Bar shows
the number of rows, then columns, even though the property is stored as
columns and rows.

selection rule

Determines which button is imitated by an ungridded pictbox or by the cells
of a gridded pictbox.

Value Class

Examples

Notes

➤ If selection rule is set to none, the pictbox will not receive a
hilited message or a selection made message when clicked.

➤ By default, selection rule is none.

➤ Several pictboxes, each acting as a single radio button, will
automatically act in tandem if they have consecutive indexes.

constant none no selection can be made

as push button one pictbox or cell can be momentarily
selected

as radio button one pictbox or cell can be persistently
selected; other pictboxes or cells are
deselected

as checkbox several pictboxes or cells can be
persistently selected

copy the selection rule of pictbox “picAnyCard” to itsRule
set selection rule of pictbox 5 of window “Choices” to as push button
343

344

Chapter 13: Window Items

Pictboxes
selection style

Determines the visual transformation that a pictbox or gridded pictbox cell
undergoes when clicked.

Value Class

Examples

Notes

➤ You can specify that areas of a given color are highlighted. Set the fill
color property of the pictbox to the color of that area.

➤ If selection style is set to none, the pictbox will not highlight or
receive a hilited or selection made message when clicked.

➤ By default, selection style is none.

constant none pictbox or cell does not highlight

by hilite white areas of pictbox or cell are overlain with the
System highlight color (from the Color control
panel)

by invert colors of pictbox or cell are inverted

by lasso colors of pictbox or cell are inverted within
contours that exclude thepictbox’s fill color

by frame pictbox or cell is surrounded by a frame

by sink pictbox or cell is surrounded by a frame that is
indented by one column of pixels on the left and
one row of pixels on the top

by exchange a different artwork resource is used for the
highlighted pictbox

copy the highlight style of theObj to itsStyle
set highlight style of pictbox “Dogie” of window “Range” to by lasso

Chapter 13: Window Items

Pictboxes
Pictbox Command and Event Messages
This section describes command and event messages that are sent specifically
to pictboxes. Pictboxes can also receive and handle several messages that are
sent to most or all window items; see the section, “Window Item Command
and Event Messages,” above.

hilited

Event message sent when an ungridded pictbox with a selection rule is
clicked.

Parameters

Examples

Notes

➤ If an ungridded pictbox’s selection rule is set to none, or if its
selection grid is greater than {1, 1}, it will not receive hilited
messages.

➤ The hilited message is for ungridded pictboxes only.

➤ The hilited and selection made messages are mutually exclusive.

selection made

Event message sent when a gridded pictbox is clicked.

Parameters

(direct) reference the pictbox

(direct) reference the pictbox

on hilited theObj
copy index of theObj to thechoice
display dialog “You clicked pictbox “ & (thechoice as string)

end hilited
345

346

Chapter 13: Window Items

Pictboxes
Examples

Notes

➤ If a pictbox’s selection grid is {1, 1}, or if its selection rule
property is set to none, it does not receive selection made messages.

➤ The selection made message is for gridded pictboxes only.

➤ The hilited and selection made messages are mutually exclusive.

➤ If the selection rule is as push button or as radio button,
then the selection is a list of one cell index.

➤ If the selection rule is as checkbox, then the selection can
be the empty list (none selected), a list of one, or a list of many indices.

on selection made theObj
--Display a list of indices of the selected cells:
copy selection of theObj to theSelect
copy “none” to selectText
repeat with i in theSelect

if selectText = “none” then
 copy contents of i to selectText
else
 copy selectText &”, “ & contents of i to selectText
end if

end repeat
display dialog “Selected cells: “ & selectText

end selection made

Chapter 13: Window Items

Popups (Pop-up Menus)
Popups (Pop-up Menus)

A popup expands, when clicked, to display a menu of items in which the user
drags to choose an item. Like radio button groups, popups permit the user to
choose only one item from a group. Unlike radio buttons, only the user’s
choice is displayed after the application user releases the mouse button, and
the user must click to expand the popup to review the other menu items
available.

The form property of popups permits a variety of data and display formats.

Individual items of the contents of a popup can be specified using the menu
item class reference. When there is not enough space to display the entire
text of a popup item, the text is truncated and an ellipsis added.

Properties of Popups
Popups have the properties shown here in addition to several properties they
have in common with most or all window items; see the section, “Properties
Common to All Window Items”, at the beginning of this chapter.

form

The form of the popup as defined by a form definition resource.

Value Class

Examples

constant standard (see notes)

string see notes

copy the form of theObj to itsFormName
set the form of popup “popColors” to “MenuOfColors”
set the form of popup 12 to standard
347

348

Chapter 13: Window Items

Popups (Pop-up Menus)
Notes

➤ The default form for a popup (a resource of type MDEF) is built into
FaceSpan, it has the value standard.

➤ Optional popup forms can be imported into a project. These can support the
display of icons and pictboxes, and have a variety of other features.

➤ A form might require the use of the format property.

➤ Many popup forms require that menu items themselves have special
formats.

➤ To see basic documentation for a form, select its name in the Forms View
of the Project Window, then click the Open button.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

format

A string of parameters for use by a form definition resource.

Value Class

string

Examples

Notes

➤ To see basic documentation for using the format property with a given
form, first assign the form to the window item, then choose Format from the
Properties popup in the Property Bar.

➤ Some forms do not require the use of the format property.

➤ Formats for popups are limited to at most 255 characters.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

set the format of window item 3 to theFormatString

Chapter 13: Window Items

Popups (Pop-up Menus)
popup item or menu item properties
Properties of the class menu item also apply to items of pop-up menus
(popups) when you use this reference form: menu item i of popup
“popWhatever.” See Chapter 14: “Menus and Menu Items,” for complete
descriptions of the properties of the menu item class.

selection

Index of the item that is selected in the popup.

Value Class

Examples

Notes

➤ The standard form for popups allows only one menu item to be selected. Its
value is standard.

➤ The selection property is a list of one item. You can set the
selection with a list containing an index or an item name (item contents).

➤ The contents of the selection is a string, not a list of one string.

➤ To get or set the contents of a specific menu item in the popup, use this
reference form: menu item i of popup “popWhatever.”

title item

The window item that will be highlighted when the popup is clicked.

Value Class

list of integer

string contents of an item in the popup

reference window item to be highlighted

constant none

copy the selection of theObj to theSel
set the selection of popup “popMetals” to “Lead”
set the selection of popup “pop”HelpTopics” to {2}
349

350

Chapter 13: Window Items

Popups (Pop-up Menus)
Examples

Notes

➤ The title item is hilited by inverting its colors.

➤ If the title item of a popup is set to the popup itself, the popup
becomes invisible except while clicked. This allows you to overlay a popup
on a pictbox or any window item to simulate popups with different shapes.

➤ The title item is none by default.

Popup Command and Event Messages
This section describes the only event message that is sent specifically to
popups.

Popups can also receive and handle several messages that are sent to most or
all window items; see the section, “Window Item Command and Event
Messages,” above.

selection made

Event message sent when a menu item in the popup is selected.

Parameters

Example

get title item of window item 3 of window of theObj
set title item of popup 3 of window 4 to 12
copy selection of popup “Choices” to userchose
set title of title item of popup “Choices” to userchose

(direct) reference the popup

on selection made theObj
copy contents of selection of theObj to theSelection
set title of label “lblSelection” to theSelection

end selection made

Chapter 13: Window Items

Popups (Pop-up Menus)
Notes

➤ The standard form for popups allows only one menu item to be selected.

➤ The selection property is a list of one item.

➤ You can set the selection with a list containing an index or an item
name (item contents).
351

352

Chapter 13: Window Items

Push Buttons
Push Buttons

Push buttons permit users to start and end processes in Macintosh windows.
They are typically used to summon windows from an existing window, and
are always used as the method of closure of modal dialogs.

FaceSpan automates the highlighting that occurs when push buttons are
clicked, and provides a set of properties for extended control of push buttons:

➤ The auto close property permits a push button to close the window it
occupies.

➤ The command key property permits a push button to be activated by a
user-specified Command-key combination.

➤ The default item property draws a double outline around a push
button, and permits its activation by the Return and Enter keys.

➤ The cancel item property permits a push button to be activated by the
Escape and Command+Period keys.

Properties of Push Buttons
Push buttons have the properties shown here in addition to several properties
they have in common with most or all window items; see the section,
“Properties Common to All Window Items,” at the beginning of this chapter.

auto close

Does clicking the button close its window?

Value Class

boolean

Examples

set the auto close of push button “pshScram” of window “Reactor” to true

Chapter 13: Window Items

Push Buttons
Notes

➤ The auto close property usually is set in edit mode.

➤ When a button whose auto close property is true is used to close a
window, the closing item property of the window contains a reference
to the button.

➤ The auto close property may be true for any number of buttons in a
window.

➤ Auto close is, by default, false.

cancel item

Does the button act like a standard Cancel button?

Value Class

boolean

Examples

Notes

➤ The button is automatically “clicked” when the application user presses
Escape or Command-Period.

➤ The cancel item property usually is set in edit mode.

➤ The cancel item property can be true of only one button in each
window.

command key

Defines the optional Command-key equivalent that activates the button.

Value Class

Examples

string an alphanumeric character

set the cancel item of push button 3 of window “Document1” to true

set command key of push button “Error” to “E”
353

354

Chapter 13: Window Items

Push Buttons
Notes

➤ The command key property usually is set in edit mode.

➤ Do not set the command key to a character that is already used as the
command key of a menu item; the menu item takes precedence, so the button
would be ignored.

➤ The default value of command key is the null string, meaning no
command key is in effect.

default item

Does the button look and act like a standard OK button?

Value Class

boolean

Examples

Notes

➤ The button is automatically “clicked” when the application user presses
Return or Enter.

➤ The default item property usually is set in edit mode.

➤ The default item property can be true of only one button in each
window.

➤ The default item has a bold outline around it.

➤ The default value of default item is false.

form

The name of a form definition resource in the project.

Value Class

constant standard standard push button

string see notes

set the default item of push button 3 of window “Document1” to true

Chapter 13: Window Items

Push Buttons
Examples

Notes

➤ The form property usually is set in edit mode.

➤ The default standard form for a push button (a resource of type CDEF) is
built into FaceSpan. It has the value standard.

➤ Optional button forms can be imported into a project. These can support the
display of icons and pictures, and have a variety of other features.

➤ A form might require the use of the format property.

➤ To see basic documentation for a form, select its name in the Forms View
of the Project Window, then click the Open button.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

format

A string of parameters for use by a form definition resource.

Value Class

string

Examples

Notes

➤ To see basic documentation for using the format property with a given
form, first assign the form to the window item, then choose Format from the
Properties popup in the Property Bar.

➤ Some forms do not require the use of the format property.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

copy the form of theObj to itsForm
set the form of theObj to “3-D Push Button”

set the format of window item 3 to theFormatString
355

356

Chapter 13: Window Items

Push Buttons
hilite

Is the push button hilited?

Value Class

boolean

Notes

➤ The hilite property of a push button is always false, because it
immediately reverts to false after the hilited message is sent.

➤ The push button actually highlights when it is clicked, and stays highlighted
as long as the mouse button is down and the cursor remains over the button.
Only when the mouse button is released is the button sent the hilited
message.

title

The text displayed by the push button.

Value Class

string

Examples

Note

➤ If a script sets the title of a push button, it might also need to tell the push
button to adjust size to fit the title.

Push Button Command and Event Messages
This section describes the only event messages that is sent specifically to push
buttons.

Push buttons can also receive and handle several messages that are sent to
most or all window items; see the section, “Window Item Command and
Event Messages,” above.

copy the title of theObj to itsTitle
set the title of push button 3 of window “Instructions” to “Click me”

Chapter 13: Window Items

Push Buttons
hilited

Event message sent when the push button is clicked.

Parameters

Examples

Notes

➤ A push button receives the hilited message only once per click, when
the mouse button is released.

➤ Since the push button’s hilite property changes only very briefly, it is
always false when the hilited message is sent.

➤ A push button can receive a hilited message in response to certain
keystrokes, as well as when clicked. Refer to the default item, cancel
item, and command key properties for more information.

➤ A push button can be designated as the doubleclick item of a listbox
or table. When an entry in the listbox or table is double-clicked, the button
highlights and is sent the hilited message.

(direct) reference the push button

on hilited of theObj
set title of theObj to “I was clicked”

end hilited
357

358

Chapter 13: Window Items

Radio Buttons
Radio Buttons

Radio buttons are displayed in groups of two or more to permit the user to
select one choice from a group of choices.

When a radio button becomes hilited, FaceSpan automatically removes the
hilite from all other buttons in the group.

FaceSpan considers any group of radio buttons having consecutive index
numbers to be a group, and automatically coordinates their hilites.

Properties of Radio Buttons
Radio buttons have the properties shown here in addition to several properties
they have in common with most or all window items; see the section,
“Properties Common to All Window Items,” at the beginning of this chapter.

form

The name of a form definition resource.

Value Class

Examples

Notes

➤ The form of a radio button usually is set in edit mode.

➤ The default standard form for a radio button (a resource of type CDEF) is
built into FaceSpan. It has the value standard.

constant standard standard radio button

string see notes

copy the form of theObj itsForm
set the form of theObj to “Fancy Radio”
set the form of radio button 12 to standard

Chapter 13: Window Items

Radio Buttons
➤ Optional button forms can be imported into a project. These can support the
display of icons and pictures, and have a variety of other features.

➤ A form might require the use of the format property.

➤ To see basic documentation for a form, select its name in the Forms View
of the Project Window, then click the Open button.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

format

A string of parameters for use by a form definition resource.

Value Class

string

Examples

Notes

➤ To see basic documentation for using the format property with a given
form, first assign the form to the window item, then choose Format from the
Properties popup in the Property Bar.

➤ Some forms do not require the use of the format property.

➤ For a detailed discussion of forms and formats, see the section entitled
“Form Definition Resources and Formats” in this chapter.

highlight

Same as the hilite property of a radio button.

hilite

Does the radio button appear highlighted?

Value Class

boolean

set the format of window item 3 to theFormatString
359

360

Chapter 13: Window Items

Radio Buttons
Examples

Notes

➤ The effect of clicking a radio button is to set its hilite to true and to
set the hilite of others in the same group to false.

➤ A radio button does not receive a hilited message when its hilite is
set to false.

➤ A radio button’s hilite is set before the hilited message is sent to it.

➤ The hilite of a radio button can be set from a script; doing so does not
send it a hilited message.

title

Text displayed by the radio button.

Value Class

string

Examples

Note

➤ If a script sets the title of a radio button, it might also need to tell the
radio button to adjust size to fit the title.

Radio Button Command and Event Messages
This section describes the only event message that is sent specifically to radio
buttons.

Radio buttons can also receive and handle several messages that are sent to
most or all window items; see the section, “Window Item Command and
Event Messages,” above.

copy the hilite of radio button “radMicrophone” to theMikeOption
set the hilite of radio button 3 of window “Runs Itself” to true

copy the title of theObj to itsTitle
set the title of radio button “radSection” of window “Help” to “Section 3"

Chapter 13: Window Items

Radio Buttons
hilited

Event message sent when the radio button becomes hilited by a click.

Parameters

Examples

Notes

➤ A radio button receives a hilited message only when it becomes hilited,
not when its hilite becomes false.

➤ A radio button’s hilite is set before the hilited message is sent to it.

(direct) reference the radio button

property chosenRadio:”chosenRadio:””
on hilited of theObj

set chosenRadio to name of theObj
end hilited
361

362

Chapter 13: Window Items

Tables
Tables

Table Objects are two-dimensional lists of textboxes called cells. Tables can
have column titles and row titles, and these can be the standard
lettering and numbering, or they can be any strings of your choosing.

When a table cell is editable, the cut, copy, paste and clear editing
commands automatically apply to it.

You can make a table scrollable or not, in either direction.

You can have a table drawn with or without lines between the rows and
columns.

The rows and columns can be resizable or not.

A table can be arbitrarily selectable, not selectable, or selectable only by rows
or columns.

Each cell of a table can have a key filter and a corresponding format
to control the entry and display of text.

Finally, every cell and title can have its own font, font size, style,
fill color and pen color.

Reference Forms
Like menu items and listbox items, the elements of tables are themselves
objects with properties. A table is a collection of row or column objects, and
a row or column is a collection of cell objects. A table may also be considered
a collection of cell objects. Thus, reference forms include:

➤ table 3

➤ rows of table 3

➤ columns of table 3

➤ cells of table 3

Chapter 13: Window Items

Tables
Properties of Tables
Tables have the properties shown here in addition to several properties they
have in common with most or all window items; see “Properties Common to
All Window Items,” at the beginning of this chapter.

Most cell and title properties (all the properties dealing with appearance) can
be assigned to all cells at once by ascribing those properties to the whole
table. Here are examples of all the cell and title properties that can be assigned
collectively:

The editable property can similarly be assigned to all cells at once (but
not to titles); see the discussion of editable, below.

The rest of the properties listed here apply a table as a single object; the
properties of rows, columns and cells are presented after the discussion of
tables.

changing

Is a cell being edited?

Value Class

boolean

Examples

Notes

➤ If the changing property is true, then the changed message will be
sent to the table when the application user tries to move the focus elsewhere.

➤ The default value of changing is false.

--Each of these sets the indicated property of every cell and title:
set the fill color of table 1 to {0, 65535, 65535}
set the font of table 1 to “Geneva”
set the justification of table 1 to right
set the pen color of table 1 to {65535, 0, 0}
set the size of table 1 to 10
set the style of table 1 to {on styles:italic}
set the uniform styles of table 1 to {on styles:italic}

copy the changed of table “tblSales” to wasEdited
363

364

Chapter 13: Window Items

Tables
column count

The number of columns in the table.

Value Class

integer

Examples

Notes

➤ The maximum column count of a table is 32,767.

➤ A newly-created table has a column count of 3.

column lines

Should a line separate each column?

Value Class

boolean

Examples

Notes

➤ The lines separating rows and columns are dotted lines drawn with the
table’s pen color.

➤ By default, column lines is true.

set the column count of table “tblSales” to 8
set numCols to count of columns of table 1
set numCols to column count of table 1 --same as above

set the column lines of table “tblSales” to true

Chapter 13: Window Items

Tables
column titles

The titles of all the columns in the table.

Value Class

Examples

Notes

➤ The usual value of column titles is simply a constant telling what kind
of titles the columns have.

➤ The default value of column titles, standard, means that the
column are labeled alphabetically.

➤ To hide the column titles, set column titles to none.

➤ If the table’s column titles are not displayed, the column titles
property is none; otherwise, it is standard or custom.

➤ If you alter any column title, the column titles property will be
custom.

➤ You can retrieve the actual title strings by coercing the value to a list while
retrieving it, as shown in the examples. The constants, when taken alone, will
not coerce.

➤ If the column titles value is none, asking for the strings returns a list
of empty strings.

constant none / standard / custom

list of string

set the column titles of table'tblFlightList” to none
copy the column titles of table “tblSales” to theKind --constant
copy (the column titles of table “tblSales”) as list to theTitles --list of strings
copy theKind as list to theTitles --error: cannot coerce a constant
set the column titles of table 2 to {“Jan”, “Feb”, “Mar”, “Apr”}
365

366

Chapter 13: Window Items

Tables
column widths

The widths of all the columns in the table.

Value Class

list of integer

Examples

Notes

➤ Column widths includes the width of column zero, which contains the
row titles.

➤ Get or set the width of a single column by way of the column’s width
property.

➤ The column width is 64 pixels by default. (The row titles are 32 pixels
wide.)

contents

The text or other values of the cells of the table.

Value Class

list of list of string cells hold strings by default

list of list of any key filters can return any

string (see notes)

set widLists to the column widths of table 1
set widLists to width of columns of table 1 --same as above
width of title of row 1 of table 1 --the column containing row titles

Chapter 13: Window Items

Tables
Examples

Notes

➤ The contents of the table or of a selection of the table can be set to a
string in which cell values within rows are delimited by tab characters, and
rows are delimited by return characters.

➤ The contents of the table or of a selection of the table can be retrieved
as a tab-delimited and return-delimited string by coercing the value when it is
retrieved, as shown in the examples.

➤ The contents of a cell can be set to a value of class resource info
of a picture that has been imported into the project; it will display that picture.

➤ To get or set the contents of only the selected cells, use the reference
form: contents of the selection.

➤ You can also get and set the contents of individual rows, columns and
cells.

➤ When a cell has a key filter assigned to it, the key filter can determine
the class of values that can be assigned to or retrieved from the cell. See
“Form Definition Resources and Key Filters,” in this chapter.

➤ If you assign to a table more column or row values than it has columns or
rows, new columns or rows will be created to hold the extra values.

➤ If you assign to a row, column or contents of the selection more
values than will fit, the extra values will be ignored.

copy the contents of table “tblSales” to myListOfLists
copy the contents of table 1 to {r1, r2, r3, r4, r5, r6} --assuming 6 rows

set theData to the contents of table 1
set theData to the contents of rows of table 1 --same as above
set theData to the contents of cells of table 1--same as above
set theData to the contents of cells of rows of table 1--same as above

set the contents of table 1 to {{“a”, “b”, “c”}, {“d”, “e”, “f”}, {“g”, “h”, “i”}, ¬
{“j”, “k”, “l”}, {“m”, “n”, “o”}, {“p”, “q”, “r”}}

set the contents of table 1 to ¬
“a \ tb \ t c \ rd \ te \ t f \ rg \ th \ t i \ r j \ t k \ t l \ rm\ tn \ to \ rp \ tq \ t r ” --same as above

set the contents of the selection of table 1 to ¬
{{“1”, “2”}, {“3”, “4”}, {“5”, “6”}}
367

368

Chapter 13: Window Items

Tables
➤ If you assign to a table fewer column or row values than there are columns
or rows, the unassigned cells are set to empty.

➤ If you assign to a row, column or contents of the selection fewer values than
will fit, the unassigned cells are unaffected.

doubleclick item

The push button to be clicked when a cell is double-clicked.

Value Class

Examples

Notes

➤ The doubleclick item must be a push button whose visible
property is true, although the button may reside outside the visible area of
the window.

➤ If the table is editable, double-clicking in a cell selects text; it does not
click the doubleclick item.

➤ By default, doubleclick item is none.

editable

May the table’s cells be edited?

Value Class

boolean

Examples

reference a push button

constant none

set the doubleclick item of table “tblSales” to push button “pshTotals”

set the editable of table “tblSales” to true

Chapter 13: Window Items

Tables
Notes

➤ Editable is really a property of cells. Setting the editable property of
a table sets the editable properties of all the table’s cells to the same value.

➤ When editable is true, the cursor is an I-beam over cells, and a plus-
sign over column and row titles. When editable is false, the cursor is a
plus-sign always.

➤ When editable is true, the text within cells can be selected for editing,
but individual cells themselves cannot be selected.

➤ When editable is false, then the cell-selection method established by
the selection rule property holds. When editable is true, cell
selection can be accomplished only by clicking row or column titles.

➤ The editable property of a new table is false.

key scrollable

Does the table respond to keystrokes?

Value Class

boolean

Examples

Notes

➤ If key scrollable is true, the arrow keys can be used to navigate
among the cells. The keys or combinations Tab, Shift-Tab, Return and Shift-
Return also move right, left, down and up, respectively.

➤ If key scrollable is true but text (rather than a cell) is selected, then
the navigation keys listed in the previous note do not navigate among cells.
In fact the arrow keys assume their normal text-editing functionality.

➤ The key scrollable property of a new table is true.

set the key scrollable of table “tblSales” to true
369

370

Chapter 13: Window Items

Tables
resizable columns

May the application user resize the columns?

Value Class

boolean

Examples

Notes

➤ You can get and set the column widths property to save and restore the
current column widths, if needed.

➤ Resizable columns defaults to true.

resizable rows

May the application user resize the rows?

Value Class

boolean

Examples

Notes

➤ You can get and set the row widths property to save and restore the
current row widths, if needed.

➤ Resizable rows defaults to false.

row count

The number of rows in the table.

Value Class

integer

set the resizable columns of table “tblSales” to false

set the resizable rows of table “tblSales”

Chapter 13: Window Items

Tables
Examples

Notes

➤ The maximum row count is 32,767.

➤ The default row count is 6.

row heights

The heights of all the rows in the table.

Value Class

list of integer

Examples

Notes

➤ Row heights includes the height of the column titles.

➤ Get or set the height of a single row by way of the row’s height property.

➤ The default heights of all rows are 17 pixels.

row lines

Should a line separate each row?

Value Class

boolean

Examples

set the row count of table “tblSales” to 1024
set numRows to the row count of table “tblExpenses”
set numRows to the count of rows of table “tblExpenses” --same as above

copy the row heights of table “tblSales” to theHeights
copy the height of the rows of table “tblSales” to theHeights --same as above

set the row lines of table “tblSales” to false
371

372

Chapter 13: Window Items

Tables
Notes

➤ The lines separating the rows are dotted lines drawn in the table’s pen color.

➤ By default, the row lines property is true.

row titles

The titles of all the rows in the table.

Value Class

Examples

Notes

➤ The usual value of row titles is simply a constant telling what kind of
titles the rows have.

➤ The default value of row titles, standard, means that the rows are
numbered.

➤ To hide the row titles, set row titles to none.

➤ If the table’s row titles are not displayed, the row titles property is
none; otherwise, it is standard or custom.

➤ If you alter any row title, the row titles property will be custom.

➤ You can retrieve the actual title strings by coercing the value to a list while
retrieving it, as shown in the examples. The constants, when taken alone, will
not coerce.

➤ If the row titles value is none, asking for the strings returns a list of
empty strings.

constant none / standard / custom

list of string

set the row titles of table 'tblFlightList” to none
copy the row titles of table “tblSales” to theKind --constant
copy (the row titles of table “tblSales”) as list to theTitle --list of strings
copy theKind as list to theTitle --error
set the row titles of table 2 to {“Angie”, “Betty”, “Doris”, “Grace”}

Chapter 13: Window Items

Tables
scroll

The row and column positions of the contents of the table.

Value Class

Examples

Notes

➤ The scroll of a table can be defined as the row and column coordinates
of the cell that occupies the upper-left corner of the content area (the area not
including the titles).

➤ The scroll of an unscrolled table is {1,1}.

scrollable across

Does the table have a horizontal scrollbar?

Value Class

boolean

Examples

Notes

➤ When scrollable across is set to true, the height of the table
increases 15 pixels to accommodate the horizontal scrollbar; when set to false
the height decreases 15 pixels.

➤ Scrollable across is true by default.

point {leftmostColumn, topmostRow}

copy the scroll of table “tblSales” to {theRow, theCol}
set the scroll of table 2 to {6, 20}

set the scrollable across of table “tblPhoneList” to false
373

374

Chapter 13: Window Items

Tables
scrollable down

Does the table have a vertical scrollbar?

Value Class

boolean

Examples

Notes

➤ When scrollable down is set to true, the width of the table
increases 15 pixels to accommodate the vertical scrollbar; when set to false
the width decreases 15 pixels.

➤ Scrollable across defaults to true.

selection

The selection of the table.

Value Class

Examples

Notes

➤ The selection property defines a rectangle bounding the selected cells.

➤ To get or set the actual values that are selected, use the reference form:
contents of the selection.

➤ If no cells are selected, the selection is {0, 0, 0, 0}.

➤ You can deselect all cells by setting the selection to {0, 0, 0, 0}.

list of integer {startCol, startRow, endCol, endRow}

set the scrollable down of table “tblQuarterlies” to false

copy the selection of table “tblSales” to {sC, sR, eC, eR}
set the selection of table “tblSales” to {sC, sR, eC, eR+1} --1 more row

Chapter 13: Window Items

Tables
selection rule

The manner in which cells can be selected.

Value Class

Examples

Notes

➤ The selection rules allow rows, allow columns, allow one row
and allow one column force an entire row or column to become selected
when the application user clicks a single cell.

➤ The selection rule defaults to allow group.

Table Command and Event Messages
This section describes command and event messages that are sent specifically
to tables.

Note that the elements of a table—cells, rows and columns—do not receive
messages; they do not have scripts, so all messages are handled in the table’s
script.

Tables can also receive and handle several messages that are sent to most or
all window items; see “Window Item Command and Event Messages,”
above.

constant allow single one cell only

allow group any rectangular group

allow rows one or more rows only

allow columns one or more columns only

allow one row one row only

allow one column only column only

none no cells at all

set the selection rule of table “tblPhoneList” to allow rows
375

376

Chapter 13: Window Items

Tables
changed

Event sent after a cell has been edited, and is about to lose the focus.

Parameters

Examples

Notes

➤ A cell of a table loses the focus when the interactive user tabs away from it,
clicks another editable window item, or closes the window. That is when the
changed message is sent, if the cell has been changed.

➤ If any cell has a key filter assigned to it, the valid property of that
cell should be checked in the changed message handler. See the valid
property.

➤ You can prevent the focus from moving away from a changed cell by
issuing the return invalid command.

focus received

Event sent after the window’s focus is set to refer to the table.

Parameters

(direct) reference the table

(direct) reference the table

on changed theObj
if not (valid of cell phoneLoc of theObj) then

display dialog “Sorry, that value is not correct. Please retry.”
return invalid

end if
end changed

Chapter 13: Window Items

Tables
Examples

Notes

➤ A table can receive the focus only when its editable or key
scrollable property is true.

➤ It receives the focus when the application user clicks it or tabs to it from
another window item. If it is the only window item that can get the focus, it
does so when the window is opened.

➤ A script can set the focus of the window to a table.

scrolled

Event sent after the table is scrolled by the application user.

Parameters

Examples

Notes

➤ A table can be scrolled with the scroll bars, or by clicking a cell and
dragging to make a selection.

➤ A table cannot be scrolled by dragging if it has no scroll bars.

➤ Setting the scroll property from a script does not send a scrolled
message. The script can send a scrolled message if needed.

(direct) reference the table

on focus received theObj
--Scroll the table back to show the first cell:
set the scroll of theObj to {1, 1}

end focus received

on scrolled theObj
--Keep the upper-left cell of the table selected:
set {colNum, rowNum} to the scroll of theObj
set the selection of theObj to {colNum, rowNum, colNum, rowNum}

end scrolled
377

378

Chapter 13: Window Items

Tables
selection made

Event sent after one or more cells of the table have been selected.

Parameters

Examples

Notes

➤ The selection made message is sent only when the application user
selects cells.

➤ The selection made message is not sent when a script sets the
selection. The message can be sent from the script if needed.

(direct) reference the table

on selection made theObj
set the font of the selection of table 1 to “Geneva”

end selection made

Chapter 13: Window Items

Rows of Tables
Rows of Tables

Rows, like columns, are not window items; they are elements of tables. Rows
are themselves objects with properties. In addition, rows are containers; they
contain cells.

Reference Forms
You can refer to a row by its index or name, or as a collection of cells. Here
are examples of row references:

➤ row 1 of table 4

➤ row “Totals” of table “tblSales”

➤ cells of row 3

Properties of Rows
Almost all the properties affecting the appearance or contents of the cells of
a row are, in fact, cell properties or properties of the row’s title.

You can get or set many cell properties as if they were properties of rows. In
most cases, ascribing a cell property to a row means all the cells in that row.
Thus, this statement:

sets the editable property of every cell in the row to false. But when you
retrieve the property, the result is a list of values:

This statement acknowledges that the editable property actually belongs
to the cells, and assigns each its own value:

The foregoing statements apply to every cell property except contents. If
you set the contents of a row to a single value, only the contents of the
first cell is changed. See the discussion of the contents property for
examples.

set the editable of row “Totals” of table “tblSales” to false

set editableList to the editable of row “Totals” of table “tblSales”
-->{false, false, false, false}

set the editable of row 4 of table 1 to {false, true, false, true, true}
379

380

Chapter 13: Window Items

Rows of Tables
Rows do have five properties of their own: index, name, title,
visible and width. Of these, title behaves as if it were an object with
its own properties; see the discussion of title for more information.

contents

The values of the cells of the row.

Value Class

Examples

Notes

➤ Contents is a cell property, not a row or column property. This example
shows that rows act as if they have that property.

➤ In the case of the contents property, a list of values must be assigned if
you wish to assign to all cells in the row; assigning a single value merely sets
the first cell.

➤ The default value class of the contents of a table cell is string, so a
list of strings will fill a row of cells.

➤ If all cells accept strings, a single string, with cell values delimited by tab
characters, can be assigned instead of a list.

list of string (the default)

list of any (depending upon key filters)

set theC to contents of row “McMullen” of table “tblSales”
set theC to cells of row “McMullen” of table “tblSales” --same effect as above

set the contents of row 3 of table “tblQuarterlies” to ¬
{“12,500”, “14,000”, “13,750”, “16,550”}

set the contents of row 3 of table “tblQuarterlies” to ¬
“12,500\t14,000\t13,750\t16,550” --same effect as above

set the contents of row “Totals” to 27 --single value assigned to first cell

Chapter 13: Window Items

Rows of Tables
➤ When a cell has a key filter assigned to it, the key filter can determine
the class of values that can be assigned to, or retrieved from, the cell. Thus,
the list assigned to, or retrieved from, a row of cells might include a mixture
of value classes. See “Form Definition Resources and Key Filters,” in this
chapter.

height

The height in pixels of the row (and all its cells).

Value Class

list of integer

Examples

Note

➤ The default height of a row is 17 pixels.

index

The index of the row within the table.

Value Class

integer

Examples

Notes

➤ The index of the top row of cells is 1.

➤ The index is a read-only property.

copy the height of row “Totals” to Ht
set the height of row “Totals” to ht*2 --double its height

set the Ind to the index of row “Totals” of table “Taxes”
381

382

Chapter 13: Window Items

Rows of Tables
name

The name of the row.

Value Class

string

Examples

Notes

➤ The name property is shorthand for contents of the title.

title

The title of the row.

Value Class

Examples

string

object (see notes)

set the name of row 10 of table “Taxes” to “Deductions”
copy the name of row 5 of table 3 to itsName

set the contents of the title of row 4 of table 1 to “1”
set the fill color of the title of row 4 of table 1 to {56797, 56797, 56797}
set the font of the title of row 4 of table 1 to “Chicago”
set the justification of the title of row 4 of table 1 to center
set the pen color of the title of row 4 of table 1 to black
set the size of the title of row 4 of table 1 to 12
set the style of the title of row 4 of table 1 to {on styles:bold}
set the uniform styles of the title of row 4 of table 1 to {on styles:bold}
set the width of the title of row 1 of table 1 to 32

set the justification of title of rows of table 1 to left --sets all row titles

Chapter 13: Window Items

Rows of Tables
Notes

➤ The title property acts as if it is an object with its own properties, as seen
in the examples. All the possible properties are shown, as if assigning their
default values.

➤ The term title of row is shorthand for contents of title of
row.

➤ Setting the width of any row title sets the width of all.

➤ The last example shows the use of title in a collective assignment.

➤ If you assign a new contents to a row title, it will not display until
you have set the table’s row titles property to custom. Setting row
titles back to standard hides them, but they still exist.

➤ If you assign a new contents to a row title, then you need to assign
all the row titles, or they will be blank.

visible

Is the row (its title and cells) visible?

Value Class

boolean

Examples

Note

➤ When the visible of a row is false, the table closes up as if the row
did not exist. It does exist, and so operations upon its title and cells can
continue.

set the visible of row “Deductions” of table “Taxes” to false
383

384

Chapter 13: Window Items

Columns
Columns

Columns, like rows, are not window items; they are elements of tables.
Columns are themselves objects with properties. In addition, they are
containers; they contain cells.

Reference Forms
You can refer to a column by its index or name, or as a collection of cells.
Here are examples of column references:

➤ column 7 of table “Mesa”

➤ column “Expenses” of table “Taxes”

➤ cells of column 3

Properties of Columns
Almost all the properties affecting the appearance or contents of the cells of
a column are, in fact, cell properties or properties of the column’s title.

You can get or set many cell properties as if they were properties of columns.
In most cases, ascribing a cell property to a column means all the cells in that
column. Thus, this statement:

sets the editable property of every cell in the column to false. But when
you retrieve the property, the result is a list of values:

This statement acknowledges that the editable property actually belongs
to the cells, and assigns each its own value:

The foregoing statements apply to every cell property except contents. If
you set the contents of a column to a single value, only the contents of
the first cell is changed. See the discussion of the contents property for
examples.

set the editable of column “Tax” of table “tblSales” to false

set editableList to the editable of column “Tax” of table “tblSales”
-->{false, false, false, false}

set the editable of column 7 of table 1 to {false, true, false, true, true}

Chapter 13: Window Items

Columns
Columns do have five properties of their own: index, name, title,
visible and width. Of these, title behaves as if it were an object with
its own properties; see the discussion of title for more information.

contents

The values of the cells of the column.

Value Class

Examples

Notes

➤ Contents is a cell property, not a row or column property. This example
shows that columns act as if they have that property.

➤ In the case of the contents property, a list of values must be assigned if
you wish to assign to all cells in the column; assigning a single value merely
sets the first cell.

➤ The default value class of the contents of a table cell is string, so a
list of strings will fill a column of cells.

➤ If all cells accept strings, a single string, with cell values delimited by return
characters, can be assigned instead of a list.

list of string (the default)

list of any (depending upon key filters)

set theC to contents of column “January” of table “tblSales”
set theC to cells of column “January” of table “tblSales” --same as above

set the contents of column 3 of table “tblAttendance” to ¬
{“12,500”, “14,000”, “13,750”, “16,550”}

set the contents of column 3 of table “tblAttendance” to ¬
“12,500\t14,000\t13,750\t16,550” --same effect as above

set the contents of column “Late” to 0 --single value assigned to first cell
385

386

Chapter 13: Window Items

Columns
➤ When a cell has a key filter assigned to it, the key filter can determine
the class of values that can be assigned to, or retrieved from, the cell. Thus,
the list assigned to, or retrieved from, a column of cells might include a
mixture of value classes. See “Form Definition Resources and Key Filters,”
in this chapter.

index

The index of the column.

Value Class

integer

Examples

Notes

➤ The index of the left column of cells is 1.

➤ The index is a read-only property.

name

The name of the column.

Value Class

string

Examples

Note

➤ The name property is shorthand for contents of the title.

set theInd to the index of column “Excise” of table “Taxes”

set the name of column 10 of table “Taxes” to “End of Year”
copy the name of column 7 of table 3 to itsName

Chapter 13: Window Items

Columns
title

The title of the column.

Value Class

Examples

Notes

➤ The title property acts as if it is an object with its own properties, as seen
in the examples. All the possible properties are shown, as if assigning their
default values.

➤ The term title of column is shorthand for contents of title
of column.

➤ Setting the height of any column title sets the height of all.

➤ The last example shows the use of title in a collective assignment.

➤ If you assign a new contents to a column title, it will not display until
you have set the table’s column titles property to custom. Setting
column titles back to standard hides them, but they still exist.

➤ If you assign a new contents to a column title, then you need to
assign all the column titles, or they will be blank.

string

object (see notes)

set the contents of the title of column 4 of table 1 to “A”
set the fill color of the title of column 4 of table 1 to {56797, 56797,
56797}
set the font of the title of column 4 of table 1 to “Chicago”
set the height of the title of column 1 of table 1 to 17
set the justification of the title of column 4 of table 1 to center
set the pen color of the title of column 4 of table 1 to black
set the size of the title of column 4 of table 1 to 12
set the style of the title of column 4 of table 1 to {on styles:bold}
set the uniform styles of the title of column 4 of table 1 to {on styles:bold}

set the justification of title of columns of table 1 to right --sets all col titles
387

388

Chapter 13: Window Items

Columns
visible

Is the column (its title and cells) visible?

Value Class

boolean

Examples

Note

➤ When the visible of a column is false, the table closes up as if the
column did not exist. It does exist, and so operations upon its title and cells
can continue.

width

The width in pixels of the column (and all its cells).

Value Class

list of integer

Examples

Note

➤ The default width of a column is 64.

set the visible of column “Benefits” of table “Taxes” to false

set the width of column “Debts” of table “Taxes” to 128

Chapter 13: Window Items

Cells
Cells

Cells, like rows and columns, are not window items; they are elements of
tables. Cells are themselves objects with properties.

Reference Forms
You can refer to a cell by its index or name, or by its position within a row or
column. Here are examples of cell references; in fact, all refer to the same
cell:

➤ cell {3, 6} of table “Mesa”

➤ cell 3 of row 6 of table “Mesa”

➤ cell 6 of column 3 of table “Taxes”

➤ cell “C6” of table “Mesa” --if standard titles

Properties of Cells
Almost all the properties affecting the appearance or contents of a table are,
in fact, cell properties (or properties of the column and row titles).

You can get or set cell properties as if they were properties of columns, rows
or whole tables. In most cases, ascribing a cell property to a column, row or
table means all the cells in that column, row or table. See the discussion in
“Properties of Columns,” above.

Conversely, you can get and set three column and row properties as if they
were properties of cells. For example, the statement:

sets the width of the cell’s column (column 2) to 64 pixels. A similar effect
occurs with the height property (of rows), while setting the visible of a
cell to false hides both its row and column.

Almost all cell properties must be set using scripts, either from the Message
Winded or at run time.

set the width of cell {2, 4} of table 1 to 64
389

390

Chapter 13: Window Items

Cells
contents

The value of the cell.

Value Class

Examples

Notes

➤ The default value class of the contents of a cell is text.

➤ When a cell has a key filter assigned to it, the key filter can determine
the class of values that can be assigned to or retrieved from the cell. See
“Form Definition Resources and Key Filters,” in this chapter.

editable

May this cell be edited?

Value Class

boolean

Examples

text the default contents

any returned by a key filter

set the key filter of cell 4 of column 5 of table 1 to “DisplayDates
set the format of cell 4 of column 5 of table 1 to “Both Date and Time”
set the contents of cell 4 of column 5 of table 1 to current date

copy the contents of cell 4 of column 5 of table 1 to myData --a date value
copy (the contents of cell 4 of column 5 of table 1) as text to dateStr --string

set the editable of cell “B3” to false
set the editable of row “Totals” of table “tblSales” to false --all cells in row
set the editable of row 4 of table 1 to {false, true, false, true, true}
set the editable of table “Taxes” to false

Chapter 13: Window Items

Cells
Notes

➤ The editable property of a single cell or of all cells in a row, column or
table can be set at once. Examples of setting by cell, row and table are shown.

➤ By default the editable of every cell in a table is false.

fill color

The fill color of the cell.

Value Class

Examples

Notes

➤ The fill color property of a single cell or of all cells in a row, column
or table can be set at once. Examples of setting by cell and by row are shown.

➤ By default the fill color of every cell in a table is white.

font

The font of the cell’s contents.

Value Class

string

RGB color {redValue, greenValue, blueValue}

integer index to color in System color lookup table

constant black / white

set myFill to {26214, 65535, 65535}

set the fill color of cell “C6” to myFill
set the fill color of row “Totals” of table “tblSales” to myFill --all cells
set the fill color of row 7 of table 4 to {myFill, white, myFill} --each cell
391

392

Chapter 13: Window Items

Cells
Examples

Notes

➤ The font property of a single cell or of all cells in a row, column or table
can be set at once. Examples of setting by cell and by row are shown.

➤ By default the font of every cell in a table is “Chicago.”

format

Parameters for use by a key filter (form) definition resource.

Value Class

string

Examples

Notes

➤ To see basic documentation for using the format property with a given
key filter, first assign the key filter to the cell, then choose Cell’s Format
from the Properties popup in the Property Bar.

➤ Some key filters do not require the use of the format property. See “Form
Definition Resources and Key Filters,” in this chapter.

➤ By default the format property is the empty string.

index

The index of the cell itself.

Value Class

list of integer point {column#, row#}

set the font of cell {3, 6} to “Palatino”
set the font of row “Totals” of table “tblSales” to “Palatino” --all cells
set the font of row 7 of table 4 to {“Geneva”, “Chicago”, “Geneva”} --each
cell

set the format of cell 4 of column 5 of table 1 to “DisplayDates”

Chapter 13: Window Items

Cells
Examples

Notes

➤ In the example, the cell resides in row “Totals” and column “January.” See
the name property.

➤ A cell’s index is persistent, while its name can change.

➤ Index is a read-only property.

justification

The justification of the cell’s contents.

Value Class

Examples

Notes

➤ The justification property of a single cell or of all cells in a row,
column or table can be set at once. Examples of setting by cell and by row are
shown.

➤ By default the justification of every cell in a table is left.

key filter

A form that controls the entry of characters into the cell.

Value Class

constant left / right / center

constant none no key filter is used

string key filter name

copy the index of cell “JanuaryTotals” to cellLocus

set the justification of cell {3, 6} to right
set the justification of row “Totals” of table “tblSales” to right --all cells
set the justification of row 7 of table 4 to {right, left, center} --each cell
393

394

Chapter 13: Window Items

Cells
Examples

Notes

➤ The key filter property normally is set in edit mode, during the design
of the window.

➤ A key filter might require the use of the format property.

➤ The key filter, if any, determines the value of the valid property.

➤ You can find out how to use a key filter by “opening” it in the Forms View
of the Project Window.

➤ When a cell has a key filter assigned to it, the key filter can determine
the class of values that can be assigned to or retrieved from the cell.

➤ Key filters are not built into FaceSpan, but can be imported into a project.
See “Form Definition Resources and Key Filters,” in this chapter.

name

The cell’s column and row titles, concatenated.

Value Class

string

Examples

Notes

➤ The name can be used to refer to the cell.

➤ If the row titles or column titles of the table are changed, the
name of each cell changes. (The index is persistent.)

➤ The name property is read-only.

set the key filter of cell 4 of column 5 of table 1 to “onlyDigits”

copy the name of cell {3,6} to itsName

Chapter 13: Window Items

Cells
pen color

The pen color of the cell.

Value Class

Examples

Notes

➤ The pen color property of a single cell or of all cells in a row, column
or table can be set at once. Examples of setting by cell and by row are shown.

➤ By default the pen color of every cell in a table is black.

size

The text size—in points—of the cell’s contents.

Value Class

integer

Examples

RGB color {redValue, greenValue, blueValue}

integer index to color in System color lookup table

constant black / white

set myPen to {26214, 65535, 65535}

set the pen color of cell “C6” to myPen
set the pen color of row “Totals” of table “tblSales” to myPen --all cells
set the pen color of row 7 of table 4 to {myPen, black, myPen} --each cell

set the size of cell “C6” to 18
set the size of row “Totals” of table “tblSales” to 18 --all cells
set the size of row 7 of table 4 to {18, 12, 18} --each cell
395

396

Chapter 13: Window Items

Cells
Notes

➤ The size property of a single cell or of all cells in a row, column or table
can be set at once. Examples of setting by cell and by row are shown.

➤ By default the size of every cell in a table is 12.

style

The text style of the cell’s contents.

Value Class

text style info

Examples

Notes

➤ The style property of a single cell or of all cells in a row, column or table
can be set at once. Examples of setting by cell and by row are shown.

➤ By default the style of every cell in a table is plain.

uniform styles

The text styles that are uniform.

Value Class

text style info

Examples

set myStyle to {on styles: bold}

set the style of cell “C6” to myStyle
set the style of row “Totals” of table “tblSales” to myStyle --all cells

set myUS to {on styles: bold}

set the uniform styles of cell “C6” to myUS
set the uniform styles of row “Totals” of table “tblSales” to myUS --all cells

Chapter 13: Window Items

Cells
Notes

➤ The uniform styles property of a single cell or of all cells in a row,
column or table can be set at once. Examples of setting by cell and by row are
shown.

➤ By default the uniform styles of every cell in a table is plain.

valid

Is the text in the cell correct according to the key filter?

Value Class

Examples

Notes

➤ Asking for the value of the valid property causes a call to the key filter
of the cell; the key filter checks the validity of the cell at that moment.

➤ If the valid property is false, asking for it as a list (as shown in the
examples) returns the selection of the first group of invalid characters in the
textbox. If valid was true, the list returned is {0, 0}.

➤ The valid property is read-only.

boolean

list of integer (see notes)

copy the valid of cell 4 of column 5 of table 1 to itsOK
copy (the valid of cell 4 of column 5 of table 1) as list to {startBad, endBad}
397

398

Chapter 13: Window Items

Textboxes
Textboxes

Textboxes are containers for variable amounts of text. They may be editable
and scrollable.

The text styles of any portion of the text in a textbox can be precisely
controlled, as can the fonts sizes, line heights and colors.

Text in textboxes can be manipulated using the standard Text Suite of objects
and properties. See the discussion of the Text Suite in this chapter.

Key filters can be applied to editable textboxes to control the entry of
characters. (Key filters are form definition resources for textboxes. They are
not built into FaceSpan, but can be added to projects.)

Properties of Textboxes
Textboxes have the properties shown here in addition to several properties
they have in common with most or all window items; see the section,
“Properties Common to All Window Items,” at the beginning of this chapter.

changing

Has the textbox been changed?

Value Class

boolean

Chapter 13: Window Items

Textboxes
Examples

Notes

➤ The value of the changing property is set to true once the user has
altered the contents of a textbox

➤ If the changing property of a textbox is true, it receives a changed
message when it loses the focus, as when the user clicks another window item
or presses Tab.

➤ If a handler changes the changing property of a textbox from true to
false, the textbox receives a changed message.

➤ Use the return invalid command to prevent the user from removing
the focus from the textbox until an invalid entry is corrected.

contents

The text or key-filtered value of the textbox.

Value Class

text the default contents

alias a reference to a text file

any returned by a key filter

on changed theObj
copy contents of theObj to theValue
if theValue < 1 or theValue > 9 then

beep
display dialog “Please enter a value between 1 and 9." ¬
 buttons “OK” default button “OK”
return invalid -- prevents the focus from leaving the textbox

end if
end changed
399

400

Chapter 13: Window Items

Textboxes
Examples

Notes

➤ When a textbox has a key filter assigned to it, the key filter can
determine the class of values that can be assigned to or retrieved from the
textbox.

➤ See the key filter property description.

➤ If the contents is set to the alias of a text file (a file of type TEXT), the
text is immediately loaded into the textbox. In edit mode, this is the same as
typing text into the textbox. Otherwise, the text is not persistent; it will be lost
when the window closes.

editable

Can the text be selected and edited by the user?

Value Class

boolean

Examples

Notes

➤ The standard editing commands—cut, copy, paste and clear—are
automatically available in editable textboxes.

➤ When the Command key is down, the editable property of all enabled
textboxes of a window is temporarily set to false. So, an editable textbox
then behaves like an uneditable one.

set the key filter of textbox “txtDate” to “DisplayDates
set the format of textbox “txtDate” to “Both Date and Time”
set the contents of textbox “txtDate” to current date
copy the contents of textbox “txtDate” to myData --a date value
copy (the contents of textbox “txtDate”) as text to dateStr --a string value

copy the editable of theObj to isItEditable
set editable of textbox 3 of window “Editable” to false
set editable of theObj to not (editable of theObj)

Chapter 13: Window Items

Textboxes
➤ You can create “hot text”—words and phrases that act like push buttons—
in editable and non-editable textboxes. See the discussion of the hilited
message and the selection rule property for more information.

➤ The locked property is the inverse of the editable property.

form

See the description of the key filter property.

format

A string of parameters for use by a key filter (form) definition resource.

Value Class

string

Examples

Notes

➤ To see basic documentation for using the format property with a given
key filter, first assign the key filter to the textbox, then choose Format from
the Properties popup in the Property Bar.

➤ Some key filters do not require the use of the format property.

➤ For a detailed discussion of key filters, forms and formats, see the section
entitled “Form Definition Resources and Formats” in this chapter.

justification

Alignment of the text within the bounds of the textbox.

Value Class

constant left / right / center

set the format of window item 3 to theFormatString
401

402

Chapter 13: Window Items

Textboxes
Examples

key filter

A form that controls the entry of characters into the textbox.

Value Class

Examples

Notes

➤ Key filters normally are set in edit mode, during the design of the window.

➤ A key filter might require the use of the format property.

➤ The key filter, if any, determines the value of the valid property.

➤ You can find out how to use a key filter by “opening” it in the Forms View
of the Project Window.

➤ When a textbox has a key filter assigned to it, the key filter can
determine the class of values that can be assigned to or retrieved from the
textbox.

➤ For a detailed discussion of key filters, forms and formats, see the section
entitled “Form Definition Resources and Formats” in this chapter.

constant none no filter is used; any characters can be
entered

string key filter name

set theJust to the justification of theObj
set the justification of textbox 3 of window “Documents” to center

set the key filter of textbox “txtRate” of window “Payables” to “onlyDigits”

Chapter 13: Window Items

Textboxes
line height

Line spacing in pixels between the baselines of text in a textbox.

Value Class

Examples

Notes

➤ If the text contains fonts of various sizes, then setting line height to a
specific value that is too small can make the words overlap. The line
height should be single space for text of mixed sizes.

➤ When line height is set to an integer, the calculation (line height - size)
yields the amount of blank space in pixels between lines of text.

➤ If not set, the value of the line height property defaults to single
space.

locked

The locked property is the inverse of the editable property.

margin

Margin between the border of the textbox and its text.

Value Class

integer

Examples

integer

constant single space

copy the line height of theObj to itsLH
set the line height of textbox “Table” of window “Report” to 16
set line height of textbox 3 to single space

copy the margin of theObj to itsMargin
set the margin of textbox “WideMargins” to 12
403

404

Chapter 13: Window Items

Textboxes
Notes

➤ The margin is measured in pixels. It applies to all four sides.

➤ If not set, the value of margin defaults to 3.

➤ Setting the margin of a textbox to 0 makes its border invisible.

➤ When the editable property of a textbox is set to false, its margin
is automatically set to 0, hiding its border. You can then change it if you wish,
showing the border.

➤ The margin of a textbox is not the same entity as the margin of a
listbox’s or movie’s bold focus outline.

mixed styles

Can the textbox contain text with mixed styles?

Value Class

 boolean

Examples

Notes

➤ The mixed styles property normally is set in edit mode, when
designing the window.

➤ If the mixed styles property is set to false while mixed-style text is
in the textbox, all the text assumes the same style, the style that was
assigned to the textbox as a whole.

scroll

Distance that the content of a scrollable textbox has been scrolled.

Value Class

integer

Examples

set the mixed styles of textbox “txtCustomer” to false

copy the scroll of theObj to itsScroll
set the scroll of textbox “txtGroceryList” of window “To Do” to 72

Chapter 13: Window Items

Textboxes
Notes

➤ The scroll property is measured in pixels.

➤ Setting the scroll property causes the textbox to scroll, and the scrollbar
to adjust accordingly.

➤ Setting the scroll property does not cause a scrolled message to be
sent to the textbox; a script can do that explicitly if needed.

➤ When the value of scrollable is false, the scroll property still has
a value. The text can be scrolled by clicking and dragging in the textbox, and
by setting its scroll.

scrollable

Does the textbox have a scrollbar?

Value Class

boolean

Examples

Notes

➤ When the scrollable property is set to true, the textbox becomes 15
pixels wider; it becomes 15 pixels narrower when the scrollable
property is set to false.

➤ When the value of scrollable is false, the textbox has no scrollbar,
but the contents (if editable) can be scrolled by clicking in the text and
dragging up or down.

➤ A textbox has a scroll value regardless of the value of the scrollable
property.

➤ Textboxes whose wrapped property is true will accept return
characters types into them. Therefore, if a window’s focus is the textbox,
pressing Return will not actuate the default button.

➤ Non-wrapped textboxes do not accept return characters, and thus do not
interfere with the default push button.

set itemScrollable to scrollable of theObj
set scrollable of textbox “txtDescription” of window “Order Entry” to false
405

406

Chapter 13: Window Items

Textboxes
selection

Portion of the contents of a textbox that is selected.

Value Class

Examples

Notes

➤ Setting the selection causes the indicated text to be hilited.

➤ Setting the selection to a range larger than the amount of text actually
in the textbox highlights all of it.

➤ If the first and second items of the selection are equal, no text is
selected; this is how an insertion point is represented.

➤ The selected text within a textbox, and its size, style and pen color,
can be accessed using these reference forms:

➤ The style, size, font, pen color and contents of the
selection can be set independently of the rest of the text in the textbox.

list of integer {beginningOffset, endingOffset}

copy the selection of theObj to {selStart, selEnd}
set selection of theObj to {0,32767}
copy the contents of selection of textbox 3 to theSelectedText
set the contents of selection of textbox 3 to “This replaces the selected
text.”

contents of the selection of textbox “txtABC”
size of the selection of textbox “txtABC”
style of the selection of textbox “txtABC”
pen color of the selection of textbox “txtABC”

Chapter 13: Window Items

Textboxes
selection rule

Makes every word of a non-editable textbox into “hot text.”

Value Class

Examples

Notes

➤ The selection rule property, although not normally associated with
textboxes, has been extended to provide a way to make every word of a non-
editable textbox act like “hot text” without the use of the group text style.

➤ If the selection rule property is as push button (any other value
is ignored), then clicking any word will select that word and send a hilited
message to the textbox. You can use this feature to implement “hypertext”
behaviors.

➤ When this technique is applied to an editable textbox, words act like
“hot text” only when the Command key is held down.

valid

Is the text in the textbox correct according to the key filter?

Value Class

Examples

constant as push button enables “hot text”

boolean

list of integer (see notes)

set the selection rule of textbox “txtInstructions” of to as push button

copy the valid of theObj to itsOK
copy (the valid of textbox 3) as list to {startBad, endBad}
407

408

Chapter 13: Window Items

Textboxes
Notes

➤ If the valid property is false, asking for it as a list (as shown in the
examples) returns the selection of the first group of invalid characters in
the textbox. If valid was true, the list returned is {0, 0}.

➤ The valid property is read-only.

wrapped

Is the text in the textbox automatically wrapped?

Value Class

boolean

Examples

Notes

➤ Wrapping means that when a line of text will not fit within the bounds of a
textbox, it is stopped after the last word that fits on that line, then continued
on the next line.

➤ Textboxes whose wrapped property is true will accept return characters
typed into them. Therefore, if a window’s focus is the textbox, pressing
Return will not actuate the default button.

➤ Non-wrapped textboxes do not accept return characters, and thus do not
interfere with the default push button.

Textbox Command and Event Messages
This section describes command and event messages that are sent specifically
to textboxes.

Textboxes can also receive and handle several messages that are sent to most
or all window items; see the section, “Window Item Command and Event
Messages,” above.

set wrapFormat to wrapped of theObj
set wrapped of textbox 3 of window “Papers” to wrapFormat
set wrapped of textbox “Unwrap” to false

Chapter 13: Window Items

Textboxes
changed

Event message sent when a newly-edited textbox loses the focus.

Parameters

Example

Notes

➤ A textbox loses the focus—and is sent a changed message—when the
application user clicks or tabs to another window item, or when the window
is closed.

➤ Textboxes in modal dialogs do not receive the changed message if the
application user clicks a button whose cancel item property is true.

➤ The example script shows how the application user can be forced to enter a
valid value into a textbox. Note the use of the return invalid command
to inhibit the loss of focus from the textbox.

➤ See the changing property of textboxes for more information.

(direct) reference the textbox whose contents have been

changed

property revertText:”revertText:””
on changed theObj

copy contents of theObj to theContents
if theContents < “2” or theContents > “7” then

beep 1
display dialog “Entry not between 2 & 7; try again.” buttons “OK”
set contents of the window item to revertText
return invalid -- prevents focus from leaving the textbox

else
set revertText to theContents

end if
end changed
409

410

Chapter 13: Window Items

Textboxes
clear

Edit menu command: Deletes the contents of the selection of a textbox.

Parameters

Examples

Notes

➤ Without a direct parameter, the clear command clears the contents
of the selection of the textbox, if any, that has the focus.

➤ With a direct parameter that is a reference to a textbox (with or without the
focus), the clear command clears the contents of the selection
of that textbox.

➤ See the selection property of textboxes for more information.

copy

Edit menu command: Copies the contents of the selection of the specified
textbox to the Clipboard.

Parameters

Examples

Notes

➤ Without a direct parameter, the copy command copies the contents of
the selection of the textbox, if any, that has the focus.

(none) textbox with the focus

(direct) reference the textbox

(none) textbox with the focus

(direct) reference the textbox

clear
clear textbox “txtDumbo”

copy textbox “txtBoilerPlate” of window “MyText”

Chapter 13: Window Items

Textboxes
➤ With a direct parameter that is a reference to a textbox (with or without the
focus), the copy command copies the contents of the selection
of that textbox.

➤ See the selection property of textboxes for more information.

cut

Edit menu command: Copies to the Clipboard the contents of the selection of
a textbox, and deletes that text from the textbox.

Parameters

Examples

Notes

➤ Without a direct parameter, the cut command cuts the contents of
the selection of the textbox, if any, that has the focus.

➤ With a direct parameter that is a reference to a textbox (with or without the
focus), the cut command cuts the contents of the selection of
that textbox.

➤ See the selection property of textboxes for more information.

focus received

Event message sent when a textbox gains the focus.

Parameters

(none) textbox with the focus

(direct) reference the textbox

(direct) reference the textbox

cut
cut textbox “txtDocument1” of window “DocumentEditor”
411

412

Chapter 13: Window Items

Textboxes
Example

Notes

➤ A textbox receives the focus when the application user clicks the textbox or
tabs to it, or when a script sets the focus of the window to the textbox.

➤ The focus received message is sent only to textboxes whose
editable property is true.

hilited

Event message sent when any group-styled text in a locked textbox is clicked.

Parameters

Example

Notes

➤ In a non-editable textbox, text with the group style is hilited when the
application user clicks it; a hilited message is then sent to the textbox. See
the discussion of the editable property.

➤ In a non-editable textbox, any word of a textbox whose selection
rule property is set to as push button is hilited when the application
user clicks it; a hilited message is then sent to the textbox. See the
discussion of the selection rule property.

➤ At the moment the textbox gets the hilited message, the selected text is
available as the contents of the selection.

➤ You can use this “hot text” feature of locked textboxes to implement
hypertext.

(direct) reference the textbox

property revertText:”revertText:””
on focus received theObj

set revertText to contents of theObj
end focus received

on hilited theObj
set contents of textbox “holdSelection” to contents of selection of theObj

end hilited

Chapter 13: Window Items

Textboxes
➤ Holding down the Command key temporarily locks the contents of
editable textboxes, allowing them, too, to behave in this way.

➤ Words and phrases can be set to the group style from the Style menu while
editing the window. To group text from a script, use the on styles
property described in Chapter 15: “Special Artwork and Text Style Classes.”

keystroke

Event message sent to a textbox with the focus when a key is pressed.

Parameters

Examples

Notes

➤ The key parameter is a composite value containing both the internal
Macintosh key code and the ASCII value of the character actually typed by
that key.

(direct) reference the textbox

key long integer the key code/character

[option down] boolean is Option key down?

[shift down] boolean is Shift key down?

[command down] boolean is Command key down?

[control down] boolean is Control key down?

[ticks] integer time (see notes)

-- Convert lower case text typed by the application user to UPPERCASE:
on keystroke theObj key keychar --ignoring other parameters
-- Extract the ASCIIvalue of typed character into variable theChar:

copy keychar mod 256 to theChar
-- If theChar is lower case, promote the keychar to upper case:
if theChar > 96 and theChar < 123 then ¬

copy keychar - 32 to keychar
-- Continue keystroke message using the updated value:

continue keystroke theObj key keychar
end keystroke
413

414

Chapter 13: Window Items

Textboxes
➤ To extract the key code, divide the key parameter by 256. To extract the
ASCII code of the character that was typed, use the modulo 256 of the key
parameter.

➤ A script can send the keystroke message as a command to simulate
typing directly into a textbox (at the insertion point or selection) just as an
application user does. The characters appear one at a time.

➤ If the keystroke handler is not continued, then the character is not typed
into the textbox.

➤ The standard String Commands scripting addition includes functions for
converting between characters and their ASCII values.

➤ Ticks indicates 60ths of a second since the last system startup and can be
used to determine elapsed time between two events. For example, if you want
to distinguish a double-click from two discrete clicks, you can compare the
value of ticks at each click and conclude that the user intended a double-click
if the difference between the two values is less than, for example, 30.

paste

Edit menu command: Pastes the contents of the Clipboard over the contents
of the selection of a textbox.

Parameters

Examples

Notes

➤ Without a direct parameter, the paste command pastes the contents of the
Clipboard in place of the contents of the selection of the textbox,
if any, that has the focus.

(none) textbox with the focus

(direct) reference the textbox

paste
paste textbox “txtHeaders” of window “Outline”

Chapter 13: Window Items

Textboxes
➤ With a direct parameter that is a reference to a textbox (with or without the
focus), the paste command pastes the contents of the Clipboard in place of
the contents of the selection of that textbox.

➤ See the selection property of textboxes for more information.

scrolled

Event message sent when the textbox is scrolled interactively.

Parameters

Example

Notes

➤ A textbox gets a scrolled message when it is scrolled with its scrollbar
(its scrollable property is true), or by clicking in it and dragging
upward or downward.

➤ Setting the scroll from a script does not cause the scrolled message
to be sent; send a scrolled message, if needed.

➤ Two or more textboxes can be made to scroll in parallel by copying the
scroll property of each one to the others when the scrolled message is
received.

(direct) reference the textbox

on scrolled theObj
copy scroll of theObj to newscroll
set scroll of textbox ‘txtFirstName” to newscroll

end scrolled
415

416

Chapter 13: Window Items

Text Suite
Text Suite

The Text Suite is a standard set of objects and properties for manipulating text
in textboxes. This suite has been adopted by developers whose applications
include text editing.

As defined by the Text Suite, the contents of a textbox can be viewed as a
whole text, or as a collection of paragraphs, lines words or characters. Each
of these elements can be referenced directly, using its index within the
container.

FaceSpan implements all the important objects and properties of the Text
Suite; missing are best type, class and default type properties,
and the text flow object.

Reference Forms
Here are examples of the various ways that you can reference text in your
applications:

➤ characters of textbox 3

➤ character 2 of textbox 3

➤ words of textbox 3

➤ word 7 of textbox 3

➤ lines of textbox 3

➤ line 5 of textbox 3

➤ paragraphs of textbox 3

➤ paragraph 2 of textbox 3

➤ character 2 of word 7 of paragraph 2 of textbox 3

In addition, you can refer to sequences of characters, words, lines and
paragraphs. Here are some examples:

If you refer to words this way, note that the words returned have no
punctuation; the result is just the words, delimited by spaces.

characters 11 thru 17 of textbox 1 --a list of those 7 characters
words 5 thru 10 of paragraph 3 of textbox 1 --a list of those 6 words
lines 1 thru 8 of textbox “txtRaven”

Chapter 13: Window Items

Text Suite
Often you will want the text that falls within a range of words, characters, and
so on, as a single string, rather than a list of words or of characters. To obtain
the text as one string, use statements that follow these forms:

When you obtain a range of text this way, it includes all the punctuation that
lies in that range.

text from word 1 to word 6 of paragraph 1 of textbox 1
text from character 40 to character 50 of paragraph 1 of textbox 1
text from character 20 to character 36 of textbox 1
417

418

Chapter 13: Window Items

Characters
Characters

A character is a single letter, digit or other symbol in a text.

Properties of Characters
It is characters that display in a textbox, and so it is characters that have the
properties that govern appearance.

color

Color of the character.

Value Class

Examples

Notes

➤ The color property is always returned as an RGB value, a list of three
long integers, from 0 to 65535, representing red, green and blue intensities.

➤ The integer values for indexing color are treated as a list within a list.

➤ By default, color is black.

font

The name of the font.

Value Class

string

RGB color {redValue, greenValue, blueValue}

integer index to color in System color lookup table

constant black / white

copy the color of character 27 of textbox “txtMessage” to theColor
set the color of character 27 of textbox “txtMessage” to black
set the color of characters 1 thru 20 of textbox 1 to {{65535, 0, 0}}

Chapter 13: Window Items

Characters
Examples

Note

➤ The default font of a textbox depends upon the window’s font property.

size

The size of the font in pixels.

Value Class

fixed

Examples

Note

➤ The default size of a textbox depends upon the window’s size property.

style

The text style.

Value Class

text style info

Examples

Notes

➤ For more information about the text style info class, see Chapter
15: “Special Artwork and Text Style Classes.”

➤ The default style of a textbox depends upon the window’s style
property.

copy the font of character 27 of textbox “txtMessage” to theFont
set the font of character 27 of textbox “txtMessage” to “New York”

copy the size of character 27 of textbox “txtMessage” to theSize
set the size of characters 10 thru 27 of textbox 1 to 18

copy the style of character 27 of textbox “txtMessage” to theStyle
set the style of characters 10 thru 27 of textbox 1 to {on styles: bold}
419

420

Chapter 13: Window Items

Characters
uniform styles

The text styles that are uniform throughout the text.

Value Class

text style info

Examples

Notes

➤ Although a single character does have a uniform styles property, it is
of no real use except when dealing with groups of characters.

➤ For more information about the text style info class, see Chapter
15: “Special Artwork and Text Style Classes.”

copy the uniform styles of character 27 of textbox “txtMessage” to theUS

Chapter 13: Window Items

Lines, Paragraphs, Words
Lines, Paragraphs, Words

Lines contain words and characters. All the properties of characters apply to
lines as well. However, the values of these properties are the values
associated with the first character of the line in question.

Properties of Lines
Lines have one additional property—justification.

justification

Justification of the text.

Value Class

Examples

Note

➤ Justification is a read-only property.

Paragraphs
Paragraphs contain words and characters. All the properties of characters
apply to paragraphs as well. However, the values of these properties are the
values associated with the first character of the paragraph in question.

Words
Words contain characters. All the properties of characters apply to words as
well. However, the values of these properties are the values associated with
the first character of the word in question.

constant left / right / center

copy the justification of line 1 of textbox “txtMessage” to theJust
421

422

Chapter 13: Window Items

Lines, Paragraphs, Words

Chapter 14:

Menus and Menu Items
Contents:

Menus and Menu Items 425

Properties of Menus 426

Menu Items 429

Chapter 14: Menus and Menu Items

Menus and Menu Items
Menus and Menu Items

Like window items, menus and menu items are interface objects with
adjustable properties. However, menus and menu items do not have scripts,
so the chosen message sent when a user chooses an item from a menu must
be handled in the script of the active window or its application.

See the discussion of the chosen message in Chapter 12: “Windows.”

Menus
Menus constructed with FaceSpan’s Menu Editor and saved with a project’s
resources are used as templates for the menus opened while a project
application is running. Menu resources can be attached to a window as its
private menus or to the application.
425

426

Chapter 14: Menus and Menu Items

Properties of Menus
Properties of Menus

The properties of menus and menu items normally are applied to a menu
template, using the Menu Editor, but all can be set at run time as well. There
are two important points to consider: first, run-time changes to menus can be
made only to the displayed copy of the menu, not to its template, and second,
the menu must be displayed at the time its property is to be set.

contents

A list of the names of the menu items contained by the menu.

Value Class

Examples

Note
➤ You can use a return-delimited string, instead of a list of strings, to set the
contents. The string should contain the menu items separated by return
characters.

enabled

Is the menu active or inactive?

Value Class

boolean

Examples

list of strings {menuItamName”,”menuItemName”...}

copy the contents of menu “Loop De Jour” to menuList
set the contents of menu 2 to {“Show Totals”,”Hide Totals”}
set the contents of menu 2 to “Show Totals\rHide Totals “--same as above

copy the enabled of menu “Documents” to itsEnabled
set the enabled of menu “Formats” to false

Chapter 14: Menus and Menu Items

Properties of Menus
Notes
➤ An active menu is normal in appearance and responsive to user input; an
inactive menu is dimmed and unresponsive to user input.

➤ If you need to disable all the items in a menu, disable the menu itself, so that
it is apparent from the menu title that there are no enabled items.

➤ By default, enabled is true.

form

The form of the menu as defined by a form definition resource.

Value Class

Examples

Notes
➤ The default standard form for a menu (a resource of type MDEF) is built
into FaceSpan.

➤ Menu forms can be assigned only at runtime; the value is not persistent
from run to run.

➤ Optional menu forms can be imported into a project. These can support the
display of icons and pictures, and have a variety of other features.

➤ Menus neither have nor use the format property.

➤ Many menu forms require that menu items themselves have special
formats. These often are descriptions of what is to be displayed in place of the
item text.

➤ To see basic documentation for a form, select its name in the Forms View
of the Project Window, then click the Open button.

➤ For a discussion of forms, see Chapter 13: “Window Items.”

constant standard no custom form

string see note

copy the form of theObj to itsFormName
set the form of popup “popColors “ to “MenuOfColors”
set the form of popup 12 to standard
427

428

Chapter 14: Menus and Menu Items

Properties of Menus
index

The index number of the menu within the menu bar.

Value Class

integer

Examples

Notes
➤ Menus are indexed sequentially from left to right, starting with the apple
menu at 1.

➤ The index of a menu is a read-only property.

name

The displayed name of the menu.

Value Class

string

Examples

Notes
➤ The name of a menu is a read-only property.

➤ The name property is the same as the title property of a menu.

title

The title property is the same as the name property.

copy the index of menu “View” to itsIndex
set the enabled of menu 3 to false

copy the name of theObj to itsName --theObj is a parameter of the chosen msg
copy name of menu 2 to menu2name

Chapter 14: Menus and Menu Items

Menu Items
Menu Items

Menu items are the individually-choosable items contained within a menu or
a popup. Each menu item can be assigned an optional Command-key
equivalent, and can be enabled or disabled, checked or not checked.

Properties of Menu Items
The properties of menus and menu items normally are applied to a menu
template, using the Menu Editor, but all can be set at run time as well. There
are two important points to consider: first, run-time changes to menus can be
made only to the displayed copy of the menu, not to its template, and second,
the menu must be displayed at the time its property is to be set.

checked

Does a mark character appear alongside the menu item?

Value Class

boolean

Examples

Notes
➤ The character used to mark a menu item is defined by the mark property.

➤ If you set the mark of a menu item to a value other than a null string (“”),
checked is set to true. If you set mark to a null string, checked is set
to false.

➤ By default, checked is false.

copy the checked of menu item 2 of menu 3 to itIsChecked
set the checked of menu item “Grid” of menu “Alignment Tools” to true
429

430

Chapter 14: Menus and Menu Items

Menu Items
command key

Command-key equivalent that activates a menu item.

Value Class

Examples

Notes
➤ The command key property does not apply to popup menu items.

➤ If you set command key to a null string (“”), then no Command-key
equivalent is in effect.

➤ Do not set command key to a space.

➤ If you use the same Command-key equivalent for more than one item in a
menu, the uppermost item with that equivalent will be chosen when the
Command key is pressed.

➤ If you use the same Command-key equivalent for items in more than one
menu, the item in the leftmost menu with that equivalent will be executed
when the Command-key is pressed.

➤ Command keys for menu items also can conflict with the command keys
assigned to push buttons.

➤ The command key is the null string by default.

contents

The contents property is the same as the name property.

string an alphanumeric character

copy the command key of theObj to cmdChar
set the command key of menu item “Find...” of menu “Tools” to “F”

Chapter 14: Menus and Menu Items

Menu Items
enabled

Is the menu item enabled (active)?

Value Class

boolean

Examples

Notes
➤ When a menu item is enabled, it is normal in appearance and responsive to
user input; when disabled, it is dimmed and unresponsive to user input.

➤ Enabled is true by default.

index

The index number of a menu item within its menu.

Value Class

integer

Examples

Notes
➤ Menu items are indexed sequentially from top to bottom within their menus.
The menu name itself is not counted.

➤ The index of a menu item is a read-only property.

set the enabled of menu item “Apply...” of menu “Formats” to false
copy the enabled of menu item 2 of menu 1 to itsEnabled

copy the index of menu item “Side” of menu “View” to itsIndex
set enabled of menu item “Editing Tools” of menu “Tools” to false
431

432

Chapter 14: Menus and Menu Items

Menu Items
mark

The character (if any) that marks a checked menu item.

Value Class

Examples:

Notes
➤ If you set the mark of a menu item to a value other than a null string (“”),
checked is set to true. If you set the mark to a null string, checked is
set to false.

➤ If checked is true and the mark is not specified, mark defaults to the
standard check mark symbol.

name

The name or text of the menu item.

Value Class

string

Examples

Note
➤ The name property is the same as the contents property of a menu item.

string a single alphanumeric character

copy the mark of theObj to itsMark
set the mark of menu item “Editing Tools” of menu “Tools” to “•”

copy the name of theObj itemName
set the name of menu item 4 of menu “Edit Tools” to “Sorter”

Chapter 14: Menus and Menu Items

Menu Items
style

The text style of the first character of the name of a menu item.

Value Class

text style info

Examples

Notes
➤ The style of a menu item is expressed as lists of on styles and off
styles. See Chapter 15: “Special Artwork and Text Style Classes.”

uniform styles

The text styles that are uniform to the contents of a menu item.

Value Class

text style info

Examples

Note
➤ The uniform styles property of a menu item is expressed as lists of
on styles and off styles. See Chapter 15: “Special Artwork and Text
Style Classes.”

Menu Command and Event Messages
There is only one event and message associated with menus, and it is handled
in the script of the menu’s window or in the project script.

copy the style of theObj itsStyle
set the style of menu item 3 of menu “Notes” to ¬

{on styles:{italic},¬
off styles:{bold, underline, outline, shadow}}

copy the uniform styles of theObj to itsUStyles
set the uniform styles of menu item 3 of menu “Notes” to {on styles:{plain}}
433

434

Chapter 14: Menus and Menu Items

Menu Items
chosen

When the application user chooses a command from a menu, FaceSpan sends
a chosen message to the active window, if any are open, or to the project
itself.

 The direct parameter of a chosen message is a reference to the menu item
currently chosen. You can use this reference to query AppleScript for
references to all the containers of the menu item—its menu, window, and
application.

The chosen message can be sent as a command, but the menu must be
visible in the menus bar or an error will occur.

Menus and menu items do not have their own scripts. See the discussion of
the chosen message in Chapter 12: “Windows.”

Chapter 15:

Special Artwork and

 Text Style Classes
Contents:

Resource Info 437

Text Style Info 440

Chapter 15: Special Artwork and Text Style Classes

Resource Info
Resource Info

The resource info object class is used to specify artwork displayed by
icon and picture window items, and by table cells.

See the discussions of the artwork property of icons and pictures in Chapter
13: “Window Items,” for more information.

Properties of Resource Info
The resource info object is implemented as a record. The object’s properties
are the fields of the record. Here is an example resource info record:

The meanings of these four properties, or fields, are discussed in this section.

class

The defining class of a resource info record.

Value Class

resource info

Note

➤ It is not always necessary to include the class when assigning a resource
info value. See the various examples in this section.

id

Unique identification number of a resource.

Value Class

integer

{class:resource info, typesetting,” name:”FaceSpan,” id:5000}
437

438

Chapter 15: Special Artwork and Text Style Classes

Resource Info
Examples

Note

➤ The id must be unique only among resources of the same type. So, a PICT
resource could have the same id as an ICON resource.

name

Name of an artwork resource.

Value Class

string

Examples

Note

➤ The name must be unique only among resources of the same type. So, a
PICT resource could have the same name as an ICON resource.

copy the artwork of icon 1 to {type:theType, name:theName, id:theID}

copy the artwork of icon “icnSignal” to theArt
set the id of theArt to the (id of theArt) + 3
set the name of theArt to “Raised Flag”
copy theArt to the artwork of icon “icnSignal”

on hilited theObj
copy artwork of icon “icnCard” to cardArt
if id of cardArt is 5101 then display dialog “You chose the Ace of spades.”

end hilited

set the artwork of icon 1 to ¬
{class:resource info, type:”cicn,” name:”Blue,” id:5102}

on hilited theObj
copy the artwork of theObj to theArt
display dialog (name of theArt)

end hilited

Chapter 15: Special Artwork and Text Style Classes

Resource Info
type

The resource type of an artwork resource.

Value Class

Examples

Note

➤ See also the examples in the discussions of name and id.

string PICT / ICON / ICN# / cicn

set artwork of picture “picBearPortrait” to {type:”PICT,” name:”Smokey”}

on MyTellType(theObj)
copy the artwork of theObj to {type:itsType}
if itsType is “cicn” then

display dialog “The type is cicn.”
else if itsType is “ICN#” then

display dialog “The type is ICN#.”
else if itsType is “ICON “ then

display dialog “The type is ICON.”
else if itsType is “PICT “ then

display dialog “The type is PICT.”
else

display dialog “This type is...Gee, I don’t know.”
end MyTellType
439

440

Chapter 15: Special Artwork and Text Style Classes

Text Style Info
Text Style Info

The text style info object class lets you specify which styles are on and
off for the text of FaceSpan objects.

See the descriptions of the style and uniform styles properties of textbox
items in Chapter 13: “Window Items,” for more information.

Properties of Text Style Info
off styles

The text styles that are off in the style or uniform styles property of an object
or the selected text of an object.

Value Class

Examples

on styles

The text styles that are on in the style or uniform styles property of an object
or selected text of an object.

Value Class

list plain/bold/italic/outline/shadow/underline/
condensed/extended/group

list plain / bold / italic / outline / shadow / underline /
condensed / extended / group

copy style of window item 3 to thestyle
copy off styles of thestyle to theoffstyles
set uniform styles of textbox 3 to {on styles:{plain}, off styles:{bold, italic, un-
derline, outline, shadow, condensed, expanded, group}}

Chapter 15: Special Artwork and Text Style Classes

Text Style Info
Examples

Note

➤ For menu items only, the last style in the list is gray rather than group.
Gray is not technically a text style, but using it sets to false the enabled
property of a menu item in a menu being edited.

copy style of window item 3 to thestyle
copy on styles of thestyle to theonstyles
set style of selection of textbox 3 to {on styles:{bold,italic}, off styles:{under-
line, outline, shadow, condensed, expanded, group}}
441

442

Chapter 15: Special Artwork and Text Style Classes

Text Style Info

Chapter 16:

Storage Items
Contents:

Storage 445

Properties of Storage items 446

Chapter 16: Storage Items

Storage
Storage

A storage item is a piece of data kept in permanent storage within a project.
Any project storage item—defined by its name and contents—can be
accessed directly, by name or id, from any script in the project.

Storage items can be created using the storage item editor (as explained in
Chapter 5, “The Storage Item Editor”) or created at run time—by script—
using the make command.

Reference Forms
There are only two reference forms for storage items, by name and by id:

storage item “Current Name”

storage item id 5003
445

446

Chapter 16: Storage Items

Properties of Storage items
Properties of Storage items

contents

The information kept in the storage item.

Value Class

anything

Examples

Notes

➤ You can get and set the contents of a storage item.

➤ Storage item values persist until changed by a script or in the storage item
editor. They are automatically saved when a project is saved and when an
application quits.

➤ Some contents property values cannot be used directly, but must be
copied out of the storage item into a variable, or coerced in place. In general,
these are the multi-valued items such as lists, records, text style info, resource
info, scripts and script object.

set newCount to currentCount + storage item “Saved Count” --a number
set theMessage to “Please call “ & storage item “Who to call” --a string

--A list, copied for local use:
copy storage item “My List” to localList
set x to item 3 of localList

--A list, coerced and used in place:
set x to item 3 of ((storage item “My List”) as list)

--How to use a script object from a storage item when you want the object
--to retain the values of its properties while in use:
copy Munger of ((storage item “Script Lib”) as script) to myMunger
tell myMunger to Catalog(theBook) --call handler in “Munger” object copy
--How to use a script object from a storage item when you will not
--be setting any of its properties:
tell Munger of ((storage item “Script Lib”) as script) to Catalog(theBook)

Chapter 16: Storage Items

Properties of Storage items
➤ The use of a storage item that contains a script object is shown in the
examples. Use of a storage item that contains a single script is similar. In
addition, you can copy the script out, use it, then copy it back in to preserve
its properties.

id

The unique id of the storage item.

Value Class

integer

Examples

Notes

➤ The id is a read-only property.

➤ The id values start at 5001.

name

The name of the storage item.

Value Class

string

Examples

set storeID to the id of storage item “Francis”

copy the name of storage item 1 to oldStoreName
set the name of storage item 1 to “Ralph”
make new storage item ¬

with properties {name:”wow”, contents:”Now what?”}
447

448

Chapter 16: Storage Items

Properties of Storage items
Notes

➤ The name property values are limited to strings no longer than 255
characters.

➤ The name property can be changed from a script, but doing so obviously
invalidates any references that use the original name.

➤ Storage items can be created, named and set to a given value at run time,
using the make command.

Special Considerations
Because they are both permanent and global, storage items can be used—with
moderation—as associative memory or as a very simple database, using the
name property as the key.

One of the more interesting uses of a storage item is to hold a library of script
objects. Such script objects are available from any script in the project, yet do
not get in the way and do not use up space in the application, window and
window item scripts. You might even create a default project with your most-
used script objects in storage items. See the discussion of the contents
property for examples of the use of script objects.

Appendix
Contents:

Appendix A: FaceSpan Menu Reference 451

Appendix B: Commands and Shortcuts 461

Appendix C: Sizes and Limits 466

Appendix D: Scripting Resources 467

Appendix E: Reserved Words List 473

Appendix F: How to Write Forms 475

Appendix G: Speed Enhancement Tips 476

 Appendix

Appendix A: FaceSpan Menu Reference
Appendix A:
FaceSpan Menu Reference

Apple menu

When FaceSpan is the active application, choose the About FaceSpan
command from the Apple menu to display ordering and support services
information, as well as a list of persons who contributed to FaceSpan’s
development. You can click the Show Info button to alternately display
registration, software configuration, and memory usage information.

File menu
While a Project Window is active, all of the File menu’s commands pertain
to the project. Use the File menu to create and save projects, to revert an
edited project to the state in which it was last saved, to convert a project into
an application, and to print reports of the project’s contents.
451

452

 Appendix

Appendix A: FaceSpan Menu Reference
New Project
When you choose New Project, FaceSpan creates a new “Untitled” Project,
and opens its Project Window. FaceSpan also creates a new project each time
you launch it by double-clicking the FaceSpan desktop icon, or by opening
FaceSpan using the Finder.

If you have created a customized “Default Project,” and placed it in the same
folder as FaceSpan, each new “Untitled” project will be created from that
template. If not, FaceSpan will provide its own standard default project. For
instructions about how to create a customized default project, see Chapter 2:
“Project Management.”

Open Project
Choose Open Project to display a dialog box from which you can open an
existing project or editable application.

Close Project
Choose Close Project to close the active project. A Save Project dialog box
displays if the project contains unsaved changes.

While a Window Editor, Menu Editor, or Script Editor is active, the Close
command pertains to the active editor.

Revert Project
Choose Revert Project, to revert an active project to the state in which it was
last saved.

While a Window Editor, Menu Editor, or Script Editor is active, the Revert
command pertains to the active editor.

Save Project
Choose Save Project to save the active project under its current name. If the
project has not yet been saved, the Save Project As dialog box displays so you
can save the project in editable form under a new name, or optionally as a
Miniature or Complete Application.

 Appendix

Appendix A: FaceSpan Menu Reference
Save Project As
Choose Save Project As to display the Save Project As dialog box, which
allows you to save the active project in editable form, optionally as a
Miniature or Complete Application.

Save As Run Only
Choose Save As Run Only to display the Save As Run Only dialog box,
which allows you to save the active project in non-editable form (under a new
name) as a Miniature or Complete Application.

Page Setup
Choose Page Setup to display the standard Macintosh printer Page Setup
dialog box.

Print Project
Choose Print Project to print a report about the window templates, menu
templates, artwork, form definition resources, and storage items of the active
project.

While a Window Editor, Menu Editor, or Script Editor is active, the Print
command pertains to the active editor.

Quit
Choose Quit to close any currently open projects and quit FaceSpan. If an
open project contains unsaved changes, a Save Project dialog box displays.

Edit menu
While a Project Window is active, Edit menu commands can be used to Cut,
Copy, Paste, Clear, and Duplicate window, menu, artwork, storage, and form
resources shown in the listbox.

While a Window Editor, Menu Editor, or Script Editor is active, the Edit
menu commands pertain to the active editor.

Window menu
Use the Window menu to display or hide FaceSpan windoids, and to move
between open projects and their window templates.
453

454

 Appendix

Appendix A: FaceSpan Menu Reference
Tools
Use the Tools command to hide or display the Window Editor’s Property Bar
and Tool Palette.

Dictionary
You can use FaceSpan’s Dictionary Windoid to inspect FaceSpan’s own
dictionary, or dictionaries of other scriptable applications. When you choose
the Dictionary command from the Window menu, the Dictionary Windoid
displays.

Detailed instructions about how to use the Dictionary Windoid are in Chapter
7: “Other Scripting Tools.”

Message
Use the Message command to hide or display the Message Windoid. While
editing window templates, you can use the Message Windoid to get and set
properties, and to send test commands to window items. Chapter 7: “Other
Scripting Tools” contains detailed instructions about how to use the Message
Windoid.

Window List
The name of each open project and its open window templates is listed in the
Window List—a section of the Window menu set off by a horizontal divider.
Beside each name is a sequentially numbered Command-key equivalent. You
can choose a name (or use the keyboard equivalent) to make an open project
or window frontmost.

Next Window
Use the Next Window command to bring the window template beneath the
active window template to the front, making it active.

 Appendix

Appendix A: FaceSpan Menu Reference
Script menu
The Script menu is enabled whenever a Script Editor is active. Script menu
commands provide additional control over scripts during editing.

Check Syntax
When you choose Check Syntax from the Script menu, FaceSpan attempts to
compile the script, and reports any compilation errors. If errors in syntax are
found, a Script Error dialog displays an explanation.

Recording
FaceSpan’s script recorder begins when you choose Recording from the
Script menu. While recording is in progress, an editable script is generated
from interactions with any recordable application. When the recorder is
turned off—by choosing the Recording command a second time, scripts are
compiled automatically and placed in the Script textbox of the open Script
Editor.

Enter Selection
To automatically enter the highlighted text into the “Find” field of the Find
dialog and Replace dialog, you select text within a script or the Message
windoid, then choose Enter Selection from the Script menu. The selected
string value is entered as the object of a search; you can now find or replace
the string by using Find Again, Find in Next, or Replace Again commands
from the Script menu.

Find
Use the Find command to locate a particular word or phrase occurring in a
script.

First, choose the Find command from the Script menu to display the Find
dialog. Next, enter the string value to be searched for in the “Find” field.
Then, click the Find button. If the specified string exists in the Script Editor,
FaceSpan finds and selects it.

Find Again
To search the active Script Editor for the next occurrence of a string value
entered in the Find dialog, choose the Find Again command from the Script
menu.
455

456

 Appendix

Appendix A: FaceSpan Menu Reference
Find in Next
Choose Find in Next to search for the next occurrence of a string value—
entered in the Find dialog—in the scripts of other window items, or other
windows in the project. Window item scripts are searched in index order.
Windows are searched in alphabetical order. If the specified string is found in
the script of another window item or window, its Script Editor is opened, and
the string is selected in the script.

Replace
To replace a particular word or phrase occurring in a script, you can use the
Replace command.

First, choose Replace from the Script menu to display the Replace dialog.
Next, enter a string value to be searched for—in the “Find” field of the dialog.
Then, enter a string value with which to replace it. Finally, click the Replace
button. If the specified string exists in the Script Editor, FaceSpan finds and
replaces it with the new string value.

Replace Again
Choose Replace Again from the Script menu to search and replace the next
occurrence of a string value—entered in the “Find” field of the Replace
dialog—in the active Script Editor.

AppleScript Formatting
Choose the AppleScript Formatting command from the Script menu to
display the AppleScript Formatting dialog box. Use the dialog box to set
global preferences for formatting the text of all AppleScript scripts. You can
find detailed instructions in Chapter 6: “The Script Editor.”

Object menu
The Object menu commands provide additional control of the window
template and its window items during editing.

 Appendix

Appendix A: FaceSpan Menu Reference
Object Info
To display an Object Information dialog, select a window template or
window item, then choose the Object Info command. An Object Info dialog
box allows you to inspect and modify many of the same window item
properties as the Property Bar, but provides larger text-editing areas and more
informative displays of current property values. You may also display a
window item’s Object Info dialog by double-clicking the item.

Object Script
To display the Script Editor for the selected object, select a window template
or window item, then choose the Object Script command.

Snap to Grid
Snap to Grid causes a window item to align with the window template’s 8-
pixel-by-8-pixel grid if the item is moved or resized. When is Snap to Grid is
“turned on” a check mark appears next to its name in the menu.

Snap to Size
When Snap to Size is turned on (check marked in the menu), the size of the
window item is automatically adjusted to its standardized dimensions if you
move or resize it.

Lock Position
When Lock Position is turned on (check marked in the menu) the drag
locked property of a selected window item is set to true. When the drag
locked property is true, selected window items cannot be moved from
their current positions until you set the value to false.

Unlock Position
When Unlock Position is turned on (check marked in the menu) the drag
locked property of a selected window item is set to false. When the
drag locked property is false, selected window items can be moved
from their current positions.
457

458

 Appendix

Appendix A: FaceSpan Menu Reference
Alignment
To display a hierarchical menu of commands you can use to align the
positions of window items, choose the Alignment command.

Align Lefts
Aligns the left edges of all selected window items with the left edge of the
leftmost selected item.

Align Centers
Aligns the centers of selected window items along an imaginary vertical line
that passes through the centerpoint of the items’ horizontal span.

Align Rights
Aligns the right edges of selected window items with the right edge of the
rightmost selected item.

Distribute Across
Distributes the centers of selected window items evenly across the breadth of
the items’ horizontal span.

Align Tops
Aligns the top edges of selected window items with the top edge of the
topmost selected item.

Align Centers
Aligns the centers of selected window items along an imaginary horizontal
line that passes through the centerpoint of the items’ vertical span.

Align Bottoms
Aligns the bottom edges of selected window items with the bottom edge of
the bottommost selected item.

Distribute Down
Distributes the centers of selected window items evenly down the height of
the items’ vertical span.

 Appendix

Appendix A: FaceSpan Menu Reference
Bring to Front
Brings the selected window items to the front layers in the window template
by increasing their index numbers. This has no effect if a selected window
item already has the highest index.

Bring Forward
Brings each selected window item forward by one layer, increasing its
index by one. This has no effect if a selected window item already has the
highest index.

Send Backward
Sends each selected window item backward by one layer, decreasing its
index by one. This has no effect if the selected window item already has the
lowest index.

Send to Back
Sends the selected window items to the back layers in the window template
by decreasing their index numbers. This has no effect if the selected
window item already has the lowest index.

Select
You can use the Select command to automatically select a window item in an
active window editor. When the Select dialog box displays, enter the name,
index, or id of the window item to be selected, then click the Select button.

Font menu
Choose the Font menu to display a list of fonts installed on your Macintosh
computer. You can make a choice from the menu to change the font of a
selected window item.

Style menu
Styles
Select a text style for any selected character(s) contained in a window item.
459

460

 Appendix

Appendix A: FaceSpan Menu Reference
Sizes
Select a point size for any selected character(s) contained in a window item.

Pen Color
You can use this popup to set the pen color property of the selected
window template or window item. Pen color determines the color in which
the foreground (outlines and text) will be drawn.

Fill Color
You can use this popup to set the fill color property of the selected
window template or window item. Fill color determines the color in which the
object’s background will be drawn.

 Appendix

Appendix B: Commands and Shortcuts
Appendix B:
Commands and Shortcuts

Keyboard commands
The Project Window, Window Editor (window template, Property Bar, Tool
Palette), and Script Editor can all be partially controlled from the keyboard.
The results of some keyboard commands differ depending on which of these
is active.

Project Window commands

Window Template keyboard commands

Option Allows the deletion of project resources without confirmation.

Tab Moves the selection from window item to window item in ascending
index order.

Shift-Tab Moves the selection in descending index order.

Arrow keys Move the selected window item in the indicated direction by 1 pixel
if the Snap To Grid command in the Object menu is turned off, or 8
pixels if Snap To Grid is turned on.

C-Arrow keys Changes the width or height of the selected window item by 1 pixel if
Snap To Grid in the Object menu is turned off, or 8 pixels if Snap To
Grid is turned on. (Adjustments to width are always made to the right
edge of an object. Adjustments to height are always made to the
bottom edge of an object.)

Control Temporarily reverses the current Snap to Grid setting.
461

462

 Appendix

Appendix B: Commands and Shortcuts
Property Bar keyboard commands

Tool Palette keyboard commands

Script Editor keyboard commands

Keyboard equivalents for menu commands
Window menu keyboard shortcuts

Return or Enter Brings the focus back to the window template from the Property Bar.

Tab Moves the selection from textbox to textbox in the Property Bar.

Shift-Tab Moves the selection from textbox to textbox in reverse order.

Arrow keys Move the insertion point within the selected textbox of the Property
Bar.

Option-Tab Shows or hides the Tool Palette and Property Bar.

C-Tab Chooses the Arrow tool.

C-Tab+Tab Chooses the I-beam tool.

C-Tab+Tab+Tab Chooses the Object Mover Tool.

Enter Checks Syntax.

Show/Hide Dictionary C,

Show/Hide Message C-M

Make Project Active C-(number of the projects)

Next Window C-L

 Appendix

Appendix B: Commands and Shortcuts
Object menu keyboard shortcuts

Script menu keyboard shortcuts

Object Info C-I

Expanded Object Info

(if available)
C-Option-M

Object Script C-E

Snap To Grid C-Y

Snap To Size C-V

Bring to Front C =

Send Back C -

Select C-F

Check Syntax C-K

Enter Selection C-E

Find C-F

Find Again C-G

Find In Next C-J

Replace C-R

Replace Again C-T
463

464

 Appendix

Appendix B: Commands and Shortcuts
Mouse Shortcuts
Opening the Script Editor
Hold the Command Key while double-clicking a window item

Selecting a line of code in the Script Editor
Triple-click the line of code.

Selecting enclosed text in the Script Editor
Double-click one of these characters to select all the text up to its mate:
“[{ « (' “ ”

Selecting multiple items in a template window
Hold the Command key while dragging over window items.

Opening the Object Information dialog
Double-click a window item

Opening an expanded Object Information dialog
Hold the Option Key while double-clicking a window template, textbox,
listbox, or popup.

Displaying Artwork Information dialogs
Double-click the artwork while the Artwork Chooser is open.

Keeping the same Object Maker tool
Hold the Command Key while the tool is selected, then drag to make several
of the same object.

Duplicating a window item
Hold the Option Key while click-dragging the object to be cloned.

 Appendix

Appendix B: Commands and Shortcuts
Aligning window items
Selected window items can be aligned by using combinations of modifier
keys and mouse clicks to the alignment tool icons in the Property Bar.

Align Lefts

Option-click

Align Rights

Option Shift-click

Align Tops

Option-click

Align Bottoms

Option Shift-click

Distribute
Across

Option-click

Distribute Down

Option-click
465

466

 Appendix

Appendix C: Sizes and Limits
Appendix C:
Sizes and Limits

This appendix tells about the maximum sizes and counts you can expect while
using FaceSpan.

Sizes and counts:
➤ Fewer than 330 window items are allowed in an open window template.

➤ Up to 9 projects can be open at once.

➤ Textboxes and listboxes can hold up to 32K (32,767) characters of text.

➤ Scripts can contain up to 32K of text each.

➤ The Message Windoid’s log area can contain up to 32K of text.

➤ Each cell of a table can contain 32K of text.

➤ The effective length of a listbox item is 100 characters.

➤ Each item stored in the storage items area can contain up to 32K of text.

Larger than effective sizes:
➤ Labels and checkbox, radio button, push button, table row, table, column,
and box titles can contain up to 250 characters.

➤ Balloon text can contain up to 32K of characters.

➤ Window, menu, menu item, artwork, form, and storage item names can
contain up to 250 characters.

Note

➤ Drag & drop works by default under System 7.5, and under System 7.1 in
which it has been purposely installed (however any FaceSpan application can
be made to “drop-launch”).

 Appendix

Appendix D: Scripting Resources
Appendix D:
Scripting Resources

To use FaceSpan effectively, you will want to develop a good understanding
of AppleScript in addition to whatever other OSA compatible scripting
language you use. You may find the following books and resources helpful.

Books About AppleScript
➤ AppleScript Applications: Building Applications with FaceSpan and
AppleScript. Peppermill, MA, August 1996.

AppleScript Applications: Building Applications with FaceSpan and
AppleScript (ISBN 0-12-6233957-6) shows the reader how to create
complete Macintosh applications using AppleScript and the FaceSpan
interface builder. It includes detailed examples that are developed over the
course of the book. It includes sections on designing Graphical User Interface
(GUI) and on debugging applications using FaceSpan. A CD Rom includes
AppleScript 1.1, a demonstration version of FaceSpan 2.1, source code for all
example applications, and numerous AppleScript shareware and
demonstration programs. The book will be released in August 1996.

➤AppleScript Finder Guide. Cupertino: Apple Computer, Inc., 1994.

AppleScript Finder Guide (ISBN 0-201-409-10-0) describes the commands
and object classes defined by the Finder for use with the English dialect of the
AppleScript language. This book is for those who want to record scripts, write
new scripts, or modify existing scripts that control actions in the Finder.

➤ AppleScript for Dummies (ISBN# 1-56884-975-3). Indianapolis: IDG
Books Worldwide, Inc.

➤ AppleScript Language Guide English Dialect. Cupertino: Apple Computer,
Inc., 1993.

AppleScript Language Guide English Dialect (ISBN 0-201-40735-3) gives
information about the commands and other terms provided by the English
dialect of the AppleScript scripting language and by the Scriptable Text
Editor. This book is bundled with the AppleScript software in the AppleScript
Development Kit from APDA and AppleScript 1.1 Scripting Kit from Apple
resellers. Addison-Wesley Publishing Company, Inc., also sells it separately.
467

468

 Appendix

Appendix D: Scripting Resources
➤ AppleScript Scripting Additions Guide English Dialect. Cupertino: Apple
Computer, Inc., 1994.

AppleScript Scripting Additions Guide (ISBN 0-201-40736-1) describes the
scripting additions that accompany the AppleScript English Dialect of the
AppleScript language. This book is for anyone who wants to write or modify
scripts, as well as for developers who want to write scripting additions. It is
included in the AppleScript Development Kit from APDA and AppleScript
1.1 Scripting Kit. You can also order it separately from Addison-Wesley.

➤ Goodman, Danny. Danny Goodman’s AppleScript Handbook, 2d ed. New
York: Random House Electronic Publishing, 1994.

This second edition of AppleScript Handbook (ISBN 0-679-75806-2)
includes in-depth coverage of scripting the Finder and the top scriptable
applications (e.g., Excel 5, Word 6, QuarkXPress, FileMaker Pro). A
complete FaceSpan application (a “reminder alarm agent”) is described in the
book and included on the book’s companion disk.

➤ Michel, Steve. Scripting the Scriptable Finder. Pleasant Hill: Heizer
Publishing, 1995.

This book presents a in-depth discussion about how to use AppleScript to
script the Scriptable Finder. It’s companion disk contains some scripting
utilities, a number of scripting additions, and over 100 scripts. Scripting the
Scriptable Finder is for novice scripters and Mac Managers alike.

➤ Schneider, Derrick, with Hans Hansen and Tim Holmes. The Tao of
AppleScript. 2d ed. Indianapolis: Hayden Books, 1994.

The Tao of AppleScript (ISBN 1-56830-075-1) from the Berkeley Macintosh
User Group (BMUG), features expanded coverage of AppleScript basics and
new information on the Scriptable Finder. This is a book for “all users.” The
Tao’s two companion disks include AppleScript 1.1, some scriptable
applications, scripting additions, and many example scripts.

➤ Trinko, Tom. Applied Mac Scripting. New York: Henry Holt & Company,
1994.

Applied Mac Scripting (ISBN 1-55828-330-7) teaches you a process for
developing scripts—from initial idea to final delivery. More than fifty pages
and dozens of screenshots are devoted to how to design and implement a
FaceSpan application. The book’s companion CD-ROM contains
AppleScript, a run-time version of Frontier UserTalk, and demo versions of
several other automation tools.

 Appendix

Appendix D: Scripting Resources
Other Helpful References
➤ Electronic Guide to Macintosh Human Interface Design.

This CD-ROM disc contains full electronic text of Macintosh Human
Interface Guidelines as well as its CD-ROM companion, Making It
Macintosh, and is available through APDA.

➤ Inside Macintosh: Interapplication Communication. Cupertino: Apple
Computer, Inc., 1993.

Inside Macintosh: Interapplication Communication (ISBN 0-201-62200-9)
is a source for more information about OSA, Apple Events, and AppleScript.
To use this book, you should be familiar with the Macintosh Toolbox and
how to respond to user events. It is available through APDA, technical
bookstores, and Addison-Wesley.

➤ Macintosh Human Interface Guidelines. Cupertino: Apple Computer, Inc.,
1993.

Macintosh Human Interface Guidelines (ISBN 0-201-62216-5) can help you
make your application look and act as much as possible like a standard
Macintosh application. It explains the reasoning behind the design of the
Macintosh interface and tells what gives the Mac it’s special “look and feel.”
The book is published by Addison-Wesley, and is available through APDA
and in bookstores.

➤ Tognazzini, Bruce. TOG on Interface. Reading: Addison-Wesley, 1992.

TOG on Interface (ISBN 0-201-60842-1) is for “all those concerned about the
relationship between people and computers,” and discusses the underlying
principles of graphic user interface design…as well as Information Theory,
Jungian philosophy, and more.

Sources
➤ Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts
1-800-822-6339
469

470

 Appendix

Appendix D: Scripting Resources
➤ APDA
Apple Computers, Inc.
P.O. Box 319
Buffalo, NY 14207-0319
1-800-282-2732 (Unites States)
1-800-637-0029 (Canada)
1-800-871-6555 (International)
e-mail (AppleLink): APDA
e-mail (Internet): APDA@applelink.apple.com

➤ Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014
408-996-1010

➤ Berkeley Macintosh User Group (BMUG)
1442A Walnut Street, #62
Berkeley, CA 94709-1496
1-800-776-BMUG
e-mail (Internet): bmug@aol.com

➤ Heizer Publishing
P.O. Box 232019
Pleasant Hill, CA 94523
510-943-7667
e-mail (Internet): heizersw@aol.com

➤ Henry Holt and Company
115 West 18th Street
New York, New York 10011
1-800-488-5233

Other Scripting Tools
The AppleScript Development Kit from APDA and AppleScript 1.1 Scripting
Kit from Apple resellers include Apple’s Script Editor and the Scriptable
Text Editor.

The Script Editor is an application you can use to open and run scripts as well
as record, write, and save new scripts. The Scriptable Text Editor is a sample
scriptable application.

Script Debugger, a product of Late Night Software Ltd. Voice: (604) 929-
5578, has great enhancements for writing and debugging your scripts.

 Appendix

Appendix D: Scripting Resources
AppleScript Support on-line
AppleLink
Developer Support: AppleScript Talk

(Note: The “Interface Builder” folder is for discussion of FaceSpan)

Internet
MacScripting Digest Mailing List

To subscribe, send a mail message to:
LISTSERV@dartmouth.edu

include the following in the body of the message:
SUBSCRIBE MACSCRPT firstname lastname

AOL
Computing: Utilities/Desk Accessories: AppleScripting

eWorld
Computer Center:Software Center from Ziffnet/Mac:Software
Central:Scripting & Programming:AppleScript & Frontier

Computer Center:Straight to the Source:Ground Zero

Computer Center:Forums:Macintosh Development Forum:Software
Library:Scripting Samples

Compuserve
MACDEV/Scripting Month

MACDEV/Tools/Debuggers

MACDEV/Other Languages

MACSYS/Utilities

DTPFORUM/Mac DTP Utilities

APPHYPER/XCMDs & XFCNs

APPHYPER/Xpert Alley

DTPFORUM/Program Demos
471

INETRESOURCE/Mac Internet S/W

MACAP/Databases

MACDEV/C and Pascal

MACAP/Misc. Applications

Appendix E:
Reserved Words List

There are many words that are used for objects, classes, properties, messages
and values by FaceSpan. These so-called “reserved words” may be used only
for their intended purposes. For example, you cannot have a variable called
“hilited”, since hilited is a message name and, therefore, a reserved word.

There are also words reserved for use in AppleScript, in the Text Suite and in
each scriptable application.

FaceSpan’s reserved words are:

activated

application

artwork

at

balloon

black

bold

bounds

box

boxes

cell

cells

center

changed

changes

changing

character

characters

checkbox

checkboxes

checked

chosen

class

clear

click

clipboard

close

closeable

color

column

columns

condensed

contents

copy

corners

count

cursor

cut

deactivated

delete

description

dialog

down

drag

draggable

draw

drop

droppable

editable

enabled

extended

floating

focus

font

form

format

front

frontmost

gauge

gauges

gray

group

growth

height

hilite

hilited

icon

icons

id

idle

index

inset

interruptible

italic

item

justification

key

keystroke

label

labels

leap

left

line

lines

listbox

listboxes

locked

make

margin

mark

maximum

menu

menus

minimum

modal

move

moved

movie

movies

name

none

open

outline

paste

pause

picture

pictures

plain

play

popup

popups

position

prepare

quit

raised

repeating

resizable

resized

right

row

rows

run

save

script

scroll

scrollable

scrolled

selection

setting

shadow

size

speed

standard

step

style

table

tables

textbox

textboxes

time

title

titled

type

underline

valid

version

visible

volume

white

width

window

windows

wrapped

zoomable

zoomed

Appendix F:
How to Write Forms

A folder called “How to Write Forms” in included on your FaceSpan disks.
It contains a “Read Me” text file and source code for several example forms.

Appendix G:
Speed Enhancement Tips

To speed up the opening of projects, try the following tips:

➤ Within the info dialog of Editable or Lockable text boxes, deselect the
Mixed Styles checkbox. This only works if you are not mixing the stylization
of text within these boxes.

➤ If you have many windows that will be accessed by a user, try opening them
all with the visible set to false. Then, when a window needs to be
displayed, instead of opening the window, set its visible property to
true, and instead of closing the window, set its visible property to
false.

To speed up the running of a FaceSpan project application, try the following
tips:

➤ Unless needed, avoid placing scripts behind every item of a window. You
can place as much of the script as possible at the window or project script
level.

➤ Try opening your application in ResEdit and setting “preload” of specific
resources in the “get resource info.” This requires a larger memory allocation.

Index

Index
Index

Numerics
3-D effect

box 291

A
activated event

window 237
adjust size command

window item 275
aete resource 130
alias

for pictbox artwork 338
allow any

selection rule 321
allow columns

selection rule 375
allow dragging

selection rule 321
allow group

selection rule 321, 375
allow one column

selection rule 375
allow one row

selection rule 375
allow rows

selection rule 375
allow single

selection rule 321, 375
application

messages, 201
properties 190
reference forms 189

Application development 182

application dictionary 171
application object 150
application structure 151
application terminology 171
applications

controlling 171, 173
FaceSpan Extension 152
Finder 177
organization 174, 183
scriptable 171
scripting FaceSpan 178
target 171, 173
terminology 171

Applications popup 130
Arrow tool 66
artwork

icon 307
movie 327
pictbox 337

artwork name
character limit 466

artwork resources 41
Artwork View 41
as checkbox

hilite rule 310
selection rule 343

as push button
hilite rule 310
selection rule 343

textbox 407
as radio button

hilite rule 310
selection rule 343

auto close
push button 352
479

 Index

Index
B
balloon

text limit 466
window item 259

Balloon Help button 74
Balloon Help Editor 74
black fill color 219
black pen color 227
bounds

window 213, 223, 236, 249
window item 259, 268, 271

box
circular 289
messages 293
oval 289
properties 288

box titles
character limit 466

boxes 288
bring to front command

window 225, 238
by exchange

hilite style 310
selection style 344

by frame
hilite style 310
selection style 344

by hilite
hilite style 310
selection style 344

by invert
hilite style 310
selection style 344

by lasso
hilite style 310
selection style 344

by sink
hilite style 310
selection style 344

C
Cancel button 353
cancel item

push button 353
cell

properties 389
reference forms 389
text limit 466

cells of tables 389
centered in current 228
centered in deepest 228
centered in main 228
changed event 363

table 376
textbox 409

changes
window 213, 230, 244
window item 260

changing
table 363
textbox 398

character limits 466
character properties 418
characters 418
Check Syntax button 104, 112
checkbox

messages 297
properties 295

checkbox titles
character limit 466

checkboxes 295
checked

menu item 429
chosen event

menu item 434
window 238

chosen message handler 169
cicn type

resource info 439
circular box 289
class
480

Index
data types 261
resource info 437
window 214
window item 261

clear command
listbox 321
movie 332
textbox 410

click as user 201
click event

window 240, 277
window item 276

clipboard
application, 190

close command
window 241

close event
window 241

closeable
window 215, 234

closing item
window 215, 230

code resources 287
color

character 418
column

properties 384
reference forms 384

column count
listbox 314
table 364

column lines
table 364

column titles
character limit 466
custom 365
table 365, 387, 394

column widths
table 366

columns of tables 384
command down

application, 190

command key
menu item 430
push button 353

Command Key popup 93
container

finding an object’s container 158
containers message

intercepting 159
contents

cell 390
column 385
listbox item 325
menu 426
menu item 430
row 380
storage item 445
table 366
textbox 399
window 216
window item 261, 284

contents of the selection 262
listbox 320
table 367, 374
textbox 406

continuing messages 159, 160
control down

application, 191
controlling windows 164
copy command

listbox 322
movie 333
textbox 410

copyrights 44
corners

box 288
cursor

application, 189, 191
cut command

movie 333
textbox 411
481

 Index

Index
D
deactivated event

window 242
debugging 122
default item

push button 354
delete command

window 242
description

window 217, 230
window item 263

development
incremental 182
interface 182
refinement 183

dialog
window 212

dictionary
of an application 171

Dictionary Windoid 130
Applications popup 130
Drag and Drop

to the Message Windoid 132

to the Script Editor 132
Events popup 131
Instructions 133
Objects popup 131

do script command
application, 202

document window 211, 221
doubleclick item

listbox 315, 357
table 357, 368

Drag and Drop
from the Dictionary Windoid 113
from the Message Windoid 113
to the Script Editor 113

drag and drop
window item 280

Drag and Drop support 466
in the Dictionary Windoid 132

in the Message Windoid 126
in the Window Editor 71
window 218
window item 278

drag event
window item 278

drag locked
window item 263

draggable
window item 264

draw command
window 238, 243, 279
window item 274, 279

drop event
window item 280

droppable
window 218
window item 264

E
editable

cell 390
movie 328
table 368
textbox 400

elapsed time
movie 328

enabled
menu 426
menu item 431
window 218
window item 265

error message 142
errors in scripts 141
Event Log radio button 123
Event Log View 125
Events popup 131
482

Index
every clauses 252
exists

window 248
exists window 235

F
FaceSpan

scripting 178
FaceSpan desktop icons 24
FaceSpan Extension 26, 152
features in FaceSpan 2.1 14
fill color

black 219, 391
cell 391
white 219, 391
window 219
window item 265

fill Color popup 77
fill pattern

black 289
box 289
color 289
dark gray 289
gray 289
light gray 289
none 289
white 289

Finder
scripting 177

finding an object’s container 158
floating

window 219
floating windoid 212, 221
focus

application 189, 192
table 376
window 220

focus received
listbox 322
movie 334

focus received event
table 376
textbox 411

font
cell 391
character 418
window 221
window item 266

Font textbox and popup 75
form

checkbox 295
gauge 299
listbox 316
menu 427
popup 347
push button 354
radio button 358
textbox 401
window 221

form definition resources 285
form names

character limit 466
format 285

cell 392
checkbox 296
gauge 300
listbox 316
popup 348
push button 355
radio button 359
textbox 401

forms 285
assigning to a window item 42
documentation 41

Forms, etc. View 41
Frontier 9
frontmost

application 193
483

 Index

Index
G
gauge

messages 303
properties 299

gauges 299
get data command

window 243
window item 281

global variables 163
graphic line

messages 306
properties 305

graphic lines 305
grow item

window 222
growth

window item 222, 267

H
handler

definition 148
handlers

definition 148
writing 156

Handlers popup 111
handling messages 156
heap space 193
height

row 381
window 223
window item 268

Height textbox 78
hierarchy

object and message 151
highlight

checkbox 296
icon 308

highlight versus hilite 308
hilite

checkbox 296
icon 308
pictbox 338
push button 356
radio button 359

hilite artwork
icon 309

hilite rule
icon 309
pictbox 339

hilite style
icon 310
pictbox 339

hilited event
checkbox 297
icon 311
pictbox 345
push button 357
radio button 361
textbox 412

hot text
textbox 407, 412

I
I-beam tool 67
ICN resource

 see type
icon messages 311
icon properties 307
ICON type

resource info 439
icons 307
id

resource info 437
storage item 447
window 223
window item 268

idle command
window 243, 244, 245

idle delay 202
484

Index
application 189, 193
window 224, 244

idle event
application 202
window 244

idle message
window 224

index
cell 392
column 386
listbox item 325
menu 428
menu item 431
row 381
window 224, 238
window item 269

Instructions
Dictionary Windoid 133
Message Windoid 127
Project Window 45
Storage Item Editor 105
Window Editor 80

interaction
messages 148, 156

interactive debugging 122
intercepting messages 159, 160
interface object 148
interruptible

application, 194
Item Name textbox 73

J
justification

box 290
cell 393
label 312
line 421
textbox 401

Justification buttons 76

K
key filter

cell 362, 390, 392, 393
cell and textbox 286
textbox 402

key filters 41, 285
key scrollable

listbox 317
table 369

keystroke
listbox 323

keystroke event
textbox 413

L
label

messages 313
properties 312

label titles
character limit 466

labeled parameters 162
labels 312
leap

gauge 300
Left Position textbox 77
line

properties 421
line height

textbox 272, 403
lines 421
listbox

messages 321
properties 314

listbox item 204, 325
character limit 466
properties 325

listboxes 314
text limit 466

locked
485

 Index

Index
movie 329
textbox 403

Log Events checkbox 123
Log Replies checkbox 124
Logging events to a file 125

M
make command

application 203
window 230, 242, 245

margin
listbox 318
movie 329
textbox 403

mark
menu item 432

Mark Character popup 93
max size

window 225, 251
maximum

gauge 301
menu

associating with a project 40
associating with a window 40
properties 426

menu bar 91
menu editor 91
menu item 91

properties 429
menu item editing 95
Menu Item Name textbox 93
menu item names

character limit 466
menu items 204, 349, 425, 429
menu messages 433
Menu Name textbox 92
menu names

character limit 466
menu naming tips 98
menu sequence 40, 94

menu template 40, 91, 92
menu template editing 95
menus 425

application 169
controlling 169
handlers 169, 239
windoid and dialog 170
window 169

Menus View 40, 91, 94
message

definition 148
hierarchy 151
interaction 148
intercepted 160
sending from script 158

Message Log radio button 123
Message Log View 124
Message Windoid 122, 137

Drag and Drop

from the Dictionary Windoid 126

from the events log 126

to the Script Editor 126
Event Log radio button 123
Instructions 127
Log Events checkbox 124
Log Replies checkbox 124
Message Log radio button 123
Scripting Language popup 123
text limit 466

messages
application 201
box 293
checkbox 297
continued 159
gauge 303
graphic line 306
handling 156
icon 311
interaction 156
label 313
listbox 321
486

Index
menu 433
movie 332
pictbox 345
popup 350
programmer-defined 161
push button 356
radio button 360
sending 158
sending from script 158
table 375
textbox 408
unhandled 159
window 237

min size
window 225, 251

minimum
gauge 301

mixed styles
textbox 404

modal
window 226, 231

modal dialog 212, 221
mouse down

application 194
mouse entered event

window item 281
mouse left event

window item 282
mouse position

application 195
mouse within event

window item 283
moved event

window 246
moved message 236
movie

messages 332
properties 327

movies 327
my reference 162

N
name

application, 189, 195
cell 394
column 386
listbox item 326
menu 428
menu item 432
resource info 438
row 382
storage item 447
window 226
window item 269

name of window 226
native code

"fat version 26
new features in 2.1 14
none

cursor, 192
fill pattern 289
hilite rule 310
hilite style 310
key filter

textbox 402
movie artwork 328
pictbox artwork 338
selection rule 321, 343
selection style 344

O
object

application 150
interface 148

object hierarchy 151
Object Information dialogs 79
Object Maker tools 69
Object Mover tool 67
object script 149
487

 Index

Index
Object Script button 75
Objects popup 131
off styles

text style info 440
offscreen 228
OK button 354
on styles

text style info 440
open command

window 247
open event

application 204
open event, 189
open window command 247
open window statement 164, 214
open window statment 164
opening windows 164
option down

application 196
OSA support

Scripting Language popup 113
oval box 289

P
palette (floating windoid) 212
paragraph

properties 421
paragraphs 421
parameters

labeled 162
positional 161

partial references 157
paste

movie 334
paste command

textbox 414
pause

movie 335
pen color

black 227

cell 395
white 227
window 227
window item 270

Pen Color popup 77
pen pattern

box 290
graphic line 305
inset 291
raised 291

pen size
box 291
graphic line 306

PICT type
resource info 439

pictbox
messages 345
properties 337

pictboxes 337
Picture Balloon Help 74
pictures in tables 367
play

movie 335
Play Mode 138
popup

messages 350
properties 347

popup items 349
pop-up menus 347
popups 347
position

window 213, 228, 247
window item 271

Position, Width, and Height Property controls 77
positional parameters 161
prepare event 205

window 248
preserving window changes 167
print setup 205
private menus

window 229
programmer-defined messages 161
488

Index
Project icon 37
project management 35
project script 37, 201
Project Script button 37
Project Window 35, 37
Project Window listbox 38
projects

number allowed open 466
properties

access 162
application, 190
boxes 288
cell 389
character 418
checkbox 295
column 384
gauges 299
graphic line 305
icon 307
initialization 163
label 312
line 421
listbox 314
listbox item 325
menu item 429
menus 426
modal dialog 165
movie 327
paragraph 421
pictbox 337
popup 347
preserving window 167
push button 352
radio button 358
resource info 437
retrieving window 165
row 379
setting window 164
table 363
text style info 440
textbox 398
window 164, 213

window item 259
word 421

Properties popup 73, 111
property

definition 148
Property Bar 72, 77

Balloon Help button 74
Item Name textbox 73
Object Script button 75
Position, Width, and Height Property

controls 77
Properties popup 74
Selected Item popup 72
Text Property controls 75

Font textbox and popup 75

Justification buttons 77

Pen Color popup 77

Size textbox and popup 76

Style buttons 76
Window Item Index textbox 73

push button
messages 356
properties 352

push button titles
character limit 466

push buttons 352

Q
quit command 189

application 205
quit command restrictions 253
489

 Index

Index
R
radio button

messages 360
properties 358

radio button titles
character limit 466

radio buttons 358
re

window 229
record script button 110
reference forms

application 189
cell 389
column 384
row 379
storage item 445
table 362
Text Suite 416
window item 257

references
partial 157
with“my” 162

repeating
movie 329

resizable
window 230, 234

resizable columns
table 370

resizable rows
table 370

resized event
window 249

resized message 236
resource info 437

properties 437
restoring window changes 167
result variable 165
retrieving window properties 165
return invalid command

cell 376
textbox 399, 409

returning parameter 214, 248
returning properties parameter 165, 230, 248
RGB color 219, 227, 266, 391
row

properties 379
reference forms 379

row count
listbox 318
table 370

row heights
table 371

row lines
table 371

row titles
character limit 466
custom 372
table 372, 383, 394

rows of tables 379
Run button 37
run event 189, 205

application 206
Run Mode 140

S
save command 203

application, 207
window 227, 246

save window statement 168
saving

editable applications 47
non-editable applications 48
run-only applications 48

saving windows 168
screen bounds

application, 196
screen depths

application 197
script 231

application, 189
project, 201
490

Index
window 231
window item 271

Script Debugger 470
Script Editor 109, 141
script errors 141
script property

application 197
Script textbox 113
Script textbox controls 110
scriptable applications 171
scriptable Finder 177
scripting

code structure 183
FaceSpan 178

scripting additions 41, 180
definition 180
importing 42
using 180

Scripting Language popup 113, 123
Scripting Tools 121
scripts

checking syntax 112
organizing 175
recording 110
text limit 466

scroll
box 291
gauge 302
listbox 319
movie 330
pictbox 340
table 373
textbox 404

scrollable
box 292
listbox 319
movie 330
pictbox 341
textbox 405

scrollable across
table 373

scrollable down

table 374
scrolled event

box 293
gauge 303
listbox 323
table 377
textbox 415

scrolling pane 294
Selected Item popup 72
selecting

multiple items 82
selection

listbox 320
movie 330
pictbox 341
popup 349
table 374
textbox 406

selection grid
pictbox 342, 346

selection made event
listbox 324
pictbox 345
popup 350
table 378

selection rule
listbox 321
pictbox 343, 345, 346
table 375
textbox 407

selection style
pictbox 344

send to back command
window 225, 249

sending messages 158
set data command

window item 283
setting

gauge 302
setting window properties 164
shift down

application 198
491

 Index

Index
show balloon command
window item 284

size
cell 395
character 419
window 231
window item 272

Size textbox and popup 76
sound 250
speed

movie 331, 336
stack space 198
staggered in current 228
staggered in deepest 228
staggered in main 228
standard column titles 365
standard cursor 191
standard form

checkbox 295
gauge 299
listbox 316
menu 427
popup 348
push button 355
radio button 358

standard row titles 372
step

gauge 302
storage item 43, 103, 163, 204, 445

assigning a value 104
checking syntax 104
naming 104
reference forms 445

Storage Item Editor 103
Storage Item Name textbox 104
storage item names

character limit 466
Storage Item Value textbox 104
Storage View 43
structure

application 151
style

cell 396
character 419
menu item 433
window 232
window item 273

Style buttons 76

T
table 362

edit commands 362
messages 375
properties 363
reference forms 362
with pictures 367

table titles
character limit 466

target application 171, 173
tell statement 173, 205

with variables 174
terminology

application 171
testing and the Message Windoid 137
testing environment 137
testing in Play Mode 138
testing in Run Mode 140
text limits 466
text style

bold 441
condensed 441
extended 441
group 441
italic 441
outline 441
plain 441
shadow 441
underline 441

text style info 440
properties 440

Text Suite 416
reference forms 416
492

Index
text to speech 232
textbox 398

messages 408
properties 398
text limit 466

The Script Editor 109
The Storage Item Editor 103
The Window Editor 63
theObj 112
ticks 199
time scale

movie 331
timed behaviors 199
Tips

Designing Windows 87
title

box 293
checkbox 297
column 387
gauge 303
label 313
menu 428
push button 356
radio button 360
row 382
window 233

title item
popup 349

title of window 233
titled

window 215, 231, 234
Tool Palette 66

Arrow tool 66
I-Beam tool 67
Object Maker tools 69
Object Mover tool 67

Top Offset textbox 78
try statement 197, 231
type

resource info 439
type as user 207

U
unhandled messages 159
uniform styles

cell 396
character 420
menu item 433
window 234
window item 273

V
valid

cell 397
textbox 402, 407

variables
global 163
initialization 163

version
application, 199

View radio button 38
visible

column 388
row 383
window 235
window item 274

volume
movie 332

W
where clauses 252
white fill color 219
white pen color 227
whose clauses 252
width

column 388
window 235
window item 275
493

 Index

Index
Width textbox 78
window

document 211
floating windoid 212
modal dialog 212
opening 164

window classes 211
window design tips 87
Window Editor

Drag and Drop

from the desktop 71

from the Tool Palette 71
window exists 235, 248
window item

fill color 77
how to make 69
index 73
naming 73
pen color 77
position 77
properties 259
reference forms 257
script 75
setting properties 74, 79
size 77
text font 75
text justification 77
text size 76
text style 76

Window Item Index textbox 73
window items 257

number allowed in window 466
Window Items popup 112
window messages 237
window names

character limit 466
window properties 213

preserving 167
retrieving 165
setting 164

window reference forms 212
window template 39, 65

window template resource 253
window-editing scripts 252
windows 211

controlling 164
menus 169
opening 164
preserving changes 167
private menus 169
restoring changes 167
saving 168
setting properties 164

Windows View 39
with properties parameter 164, 203, 230, 246,

249
word

properties 421
words 421
wrapped

textbox 408

Z
zoom in command

window 225
zoom in event

window 251
zoom out command

window 225
zoom out event

window 251
zoomable

window 234, 236
zoomed

window 236
494

	Copyright © 1996 Digital Technology International....
	All rights reserved.
	No part of this publication or the software descri...
	Printed in the United States of America.
	FaceSpan™ and the FaceSpan distinctive logo are tr...
	No licenses, express or implied, are granted with ...
	Digital Technology International 500 West 1200 Sou...
	Mention of third-party products is for information...
	Even though Digital Technology International has r...
	IN NO EVENT WILL Digital Technology International ...
	THE REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN ...
	FaceSpan was originally developed by Leonard Buck....
	User’s Guide
	Version 2.1
	Notice to FaceSpan SRT and Demo Users:

	This user guide is intended to meet the needs of a...
	Please contact the FaceSpan Sales Department to in...
	Address:
	Digital Technology International
	500 West 1200 South
	Orem, Utah 84058
	Phone:
	801-226-2984 (Main)
	800-322-3772 (U.S. Toll Free)
	Fax:
	801-226-8438
	E-mail:
	facespan@dtint.com
	Preface

	Part I:FaceSpan Usage Guide
	Chapter�1: Overview of the Environment
	Chapter�2: Project Management
	Chapter�3: The Window Editor
	Chapter�4: The Menu Editor
	Chapter�5: The Storage Item Editor
	Chapter�6: The Script Editor
	Chapter�7: Other Scripting Tools
	Chapter�8: The Testing Environment

	Part II: The Structure of Applications
	Chapter�9: The Structure of Applications
	Chapter�10: Scripting Your Application

	Part III: FaceSpan Object and Language Reference
	Chapter�11: Applications
	Chapter�12: Windows
	Chapter�13: Window Items
	Chapter�14: Menus and Menu Items
	Chapter�15: Special Artwork and Text Style Classes...
	Chapter�16: Storage Items
	Appendix
	Index

	About This Guide
	The FaceSpan User Guide is a complete guide to the...
	You should read this section if you want to know:
	‰ how this guide is organized
	‰ what each chapter includes
	‰ how to interpret words that have special formatt...
	‰ what references were used in writing this guide
	Organization of the Guide
	The FaceSpan User Guide describes how to use FaceS...
	This guide is intended for experienced Macintosh u...
	The guide contains an introduction and three main ...
	‰ Part I: “FaceSpan Usage Guide” describes how to ...
	‰ Part II: “Application Development” discusses the...
	‰ Part III: “FaceSpan Object and Language Referenc...
	The guide’s appendices include a menu reference, a...
	This guide also includes an index.
	Introducing FaceSpan

	The introduction contains three sections:
	‰ “Overview of FaceSpan” gives a brief overview of...
	‰ “How to Get More Information” tells you where to...
	‰ “New Features in Version 2.1” lists many of the ...
	Part I: FaceSpan Usage Guide

	Part I contains eight chapters:
	Chapter 1
	“Overview of the Environment,” describes FaceSpan ...
	Chapter 2
	“Project Management,” describes FaceSpan’s Project...
	Chapter 3
	“The Window Editor,” describes the tools used to c...
	Chapter 4
	“The Menu Editor,” describes the environment used ...
	Chapter 5
	“The Storage Item Editor,” defines storage items a...
	Chapter 6
	“The Script Editor,” describes how to use FaceSpan...
	Chapter 7
	“Other Scripting Tools” describes how to use the M...
	Chapter 8
	“The Testing Environment,” defines various testing...
	Part II: Application Development

	Part II contains two chapters:
	Chapter 9
	“The Structure of Applications,” describes the com...
	Chapter 10
	“Scripting Your Application,” discusses the struct...
	Part III: FaceSpan Object and Language Reference

	Part III contains six chapters:
	Chapter 11
	“Applications,” describes the properties of the ap...
	Chapter 12
	“Windows,” defines the properties of windows as we...
	Chapter 13
	“Window Items,” describes the properties common to...
	Chapter 14
	“Menus and Menu Items,” describes the properties o...
	Chapter 15
	“Special Artwork and Text Style Classes,” describe...
	Chapter 16
	“Storage Objects,” describes the properties of sto...
	Appendices

	This guide contains six appendices:
	Appendix A
	“FaceSpan Menu Reference,” explains the commands a...
	Appendix B
	“Commands and Shortcuts,” lists the keyboard comma...
	Appendix C
	“Sizes and Limits,” tells about the maximum sizes ...
	Appendix D
	“Scripting Resources,” lists reference materials a...
	Appendix E
	“Reserved Word List,” gives a list of words that a...
	Appendix F
	“How to Write Forms,” tells you where to find addi...
	Appendix G
	“Speed Enhancement Tips,” gives you tips on how to...
	Language Conventions

	There are instances where words in this guide use ...
	References

	AppleScript Language Guide English Dialect. Cupert...
	AppleScript Scripting Additions Guide English Dial...
	Macintosh Human Interface Guidelines. Cupertino: A...

	Overview of FaceSpan
	You should read this chapter if you want to know:
	‰ how FaceSpan and AppleScript are interrelated
	‰ what you can do with FaceSpan
	‰ what you need to know in order to use FaceSpan
	About FaceSpan
	FaceSpan is an application package that allows you...
	You can script essential elements of FaceSpan itse...

	FaceSpan and AppleScript
	Used alone, most scripting languages can provide o...
	FaceSpan’s objects automatically behave in accorda...
	Completed FaceSpan projects can be saved as applic...

	FaceSpan and Frontier
	Enhanced Frontier support is now available in Face...
	‰ UserTalk can be executed right from the Message ...
	‰ The Script Editor popups support UserTalk.
	‰ The titles of the Script Editor’s windows reflec...
	‰ Newly created scripts default to the same langua...
	‰ You can now record UserTalk scripts.
	‰ Errors are now properly reported, and their loca...

	FaceSpan’s Development and Testing Environments
	A completed FaceSpan project is made up of windows...
	FaceSpan’s Project Window is the command center fr...
	Menus are created using FaceSpan’s Menu Editor. In...
	Windows are created in much the same way as menus....
	FaceSpan’s Message Windoid is a powerful tool in b...

	What Can Be Done with FaceSpan
	The projects you make with FaceSpan can be as simp...
	Create friendly interfaces

	Use FaceSpan to put user-friendly interfaces on ot...
	Make standalone applications

	FaceSpan has a friendly, object-oriented language,...
	Create quick prototypes

	Any kind of application can be prototyped with Fac...
	Develop integrated software

	You can create FaceSpan applications that pull tog...
	Develop scriptable applications

	Every application developed with FaceSpan is itsel...
	Make tools for FaceSpan

	Because FaceSpan is itself a scriptable applicatio...
	Learn to program

	With FaceSpan’s supportive and satisfying environm...

	What You Need to Know
	This guide is intended for experienced Macintosh u...

	How to Get More Information
	You should read this chapter if you want to know:
	‰ where to find the FaceSpan tutorials, demonstrat...
	‰ what on-line reference tools FaceSpan includes
	Tutorials
	FaceSpan comes with tutorial projects, designed to...

	Feature Highlights
	The FaceSpan disks include many simple projects de...
	The best way to learn from these projects is to op...

	Example Applications
	Example Applications are real applications, create...

	FaceSpan’s Built-in Reference Tools
	FaceSpan’s Script Editor has popups (pop-up menus)...
	FaceSpan’s Dictionary Windoid allows you to locate...
	For more information about the Script Editor, see ...

	New features in FaceSpan
	New features in FaceSpan Version 2.1
	‰ When saving miniature and complete applications,...
	‰ When saving as run-only, you can now choose to e...
	‰ A window now has a title property distinct from ...
	‰ A pictbox now has a scale property, which contro...
	‰ A pictbox now has a justification property. See ...
	‰ An application now has a ticks property, which r...
	‰ An application now has heap space and stack spac...
	‰ Enhanced Frontier support is now available in Fa...
	‰ Two new commands let your scripts mimic the acti...
	‰ While FaceSpan itself has been “fat” since versi...
	‰ Windows can now be printed under script control....
	‰ You can script essential elements of FaceSpan it...
	‰ You can now play and record sounds as either “sn...

	New features in FaceSpan version 2.0
	Enhanced Interface Development Environment
	‰ Support for Drag and Drop in editing
	‰ Control over each window item’s resizing in resp...
	‰ User-configured default windows and projects
	‰ A format property for configuring popups, listbo...
	‰ Text alignment for labels and titled boxes
	‰ Direct import of forms, key filters, and scripti...
	‰ Direct import of cursors and pixel patterns
	‰ On-line form definition resource documentation
	Enhanced Scripting and Testing

	‰ OSA support
	‰ Event logging
	‰ A storage object that can contain any value, inc...
	‰ Script-controlled Show Balloon event for objects...
	‰ Eleven new application properties, including a c...
	‰ AppleScript formatting
	‰ On-line dictionary reference
	‰ Global persistent variables accessible by all sc...
	‰ “Do Script” event support
	‰ A Script menu with additional editing commands
	‰ Full Find and Replace support in the Script Edit...
	‰ A Script Editor popup that displays handlers for...
	‰ Script-initiated idle event
	Enhanced Functionality for Your Applications

	‰ A table object
	‰ Support for Drag and Drop at runtime
	‰ Enhanced key filters for textboxes including Dis...
	‰ Direct embedding of scripting additions (OSAXs) ...
	‰ Text Suite support for textboxes
	‰ Color patterns for filling boxes
	‰ Animated buttons

	Preface

	Overview of the Environment
	You should read this chapter if you want to know:
	‰ what types of files FaceSpan can create
	‰ what interface objects FaceSpan can create or su...
	‰ what basic tasks are required to develop an appl...

	FaceSpan and its Associated Files
	Using FaceSpan you can create Project documents, C...
	Projects
	Projects are editable documents created with FaceS...
	You can make an application from a project by savi...

	Applications
	FaceSpan creates two types of applications, Comple...
	Complete Applications

	A project that is saved as a Complete Application ...
	Miniature Applications

	A project that is saved as a Miniature Application...

	About the FaceSpan Extension
	When you purchase FaceSpan, your license agreement...
	While FaceSpan itself has been “fat” since version...

	FaceSpan’s Interface objects
	A project’s user interface is made up of menus, do...
	Menus
	The customized menus you create using FaceSpan’s M...

	Windows
	Using FaceSpan, you can create window templates be...
	Each time you create a new window template or open...
	Window items

	Windows contain smaller parts generically called w...
	Window Item Properties, Commands, and Messages

	Every window item has properties. Each property ha...
	At runtime, window items receive messages which ar...

	Artwork
	You can add your own artwork to projects. The wind...

	Form resources
	The default standard form definition resource, or ...

	Scripts
	Scripts can be attached to any window or window it...

	Basic Development Tasks
	Managing projects
	Once you’ve created a project, its Project Window ...

	Editing menus
	FaceSpan’s Menu Editor makes creating custom menus...

	Editing windows
	Inside FaceSpan’s Window Editor, you can create an...
	Most of the window items automatically behave like...

	Scripting
	After you have created the windows and menus for y...
	The Script Editor not only provides a standard tex...

	Testing
	FaceSpan supports testing at all stages of applica...

	Chapter�1: Chapter�1: Overview of the Environment
	Chapter�2: Chapter�2: Project Management

	Project Management
	You should read this chapter if you want to know:
	‰ how to create and save projects
	‰ how to import and manage project resources: Wind...
	A completed FaceSpan project is made up of windows...
	All project-level editing centers around the Proje...
	Design-time editing done directly from the Project...
	The Project Window
	Using the Project Window, you can…
	‰ Edit the script of the project
	‰ Test projects under construction and run complet...
	‰ Save projects as applications
	‰ Cut, copy, and paste any resource among projects...
	‰ Open editors for editable project resources
	‰ Create, inspect, and delete window and menu temp...
	‰ Import artwork from any Macintosh document or ap...
	‰ Create, define, or delete storage items
	The Project Window is divided into two sections. T...

	Project icon
	The Project icon, located near the top left corner...

	Project Script controls
	Project Script controls include the Project Script...
	Project Script button

	Click the Project Script button to open the Script...
	Run button

	When you click the Run button, FaceSpan attempts t...
	While the project script is running, the Project W...

	Project Window listbox and View radio buttons
	The resources displayed in the Project Window list...
	Windows View

	The window templates associated with a project are...
	Menus View

	Menu templates are created within FaceSpan, and th...
	In Menus View, the Project Window listbox contains...
	Artwork View

	Artwork resources can include pictures (PICT), ico...
	Forms, etc. View

	Items listed in the Forms, etc. View can include f...
	Forms and scripting additions are not created in F...
	Note
	‰ While a project that uses a scripting addition i...
	Storage View

	A storage item is a piece of data kept in persiste...

	Project Window Buttons
	The Delete, New, Open, and Import buttons— in comb...
	‰ Window templates an menu templates can be: Creat...
	‰ Artwork resources can be: Imported from any othe...
	‰ Form resources and key filters can be: Imported ...
	‰ Storage items can be: Created by using the New b...
	About Copyrights

	Remember that many pictures, movies, desktop patte...

	Instructions
	Using File menu and Edit menu commands
	While the Project Window is active, all of the com...

	Creating a new project
	FaceSpan creates a new “Untitled” project document...
	Note
	‰ If you have made a customized default project, F...

	Making a default project
	You can create your own customized default project...

	Opening an existing project or editable applicatio...
	FaceSpan opens and displays the Project Window of ...

	Saving a project
	FaceSpan saves the project under its current name....
	Saving a project as an editable application
	1 Choose Save Project As… from the File menu.
	2 Enter the name under which the document will be ...
	3 From the Kind pop-up menu, choose the format in ...
	4 If you chose to save the document as a Miniature...
	5 Click the Save button.

	Saving a project as a non-editable, run-only appli...
	1 Choose Save As Run Only… from the File menu.
	2 Enter the name under which the document will be ...
	3 From the Kind pop-up menu, choose the format in ...
	4 If you want to include the dictionary, click the...
	5 If you want Localization Support, click the Loca...
	6 Click the Save button.

	Notes
	‰ The run-only version of an application can no lo...
	‰ When an application is saved as run-only, it doe...
	Reverting to the last saved version of a project

	FaceSpan discards all changes made since the last ...
	Note
	Changes made to a project become permanent when th...

	Editing a project's script
	The Script Editor opens to display the project scr...
	Note
	‰ See Chapter 6 for more information about FaceSpa...

	Running a project
	FaceSpan hides all open window templates, compiles...
	The Run button changes into a Stop button with whi...
	Stopping a running project
	1 Click the running project's Project Window to ma...
	2 Click the Stop button.

	FaceSpan immediately halts the running script, clo...
	The previously Stop button changes back into the R...

	Finding an existing project resource
	1 Click the View radio button for the appropriate ...
	2 Locate the resource in the list.
	Cutting a resource from another project
	1 Click the appropriate View radio button in the P...
	2 Select the name of a window template, menu templ...
	3 Choose Cut from the Edit menu.

	The selected item is copied to the clipboard and d...
	Copying a resource from another project
	1 Click the appropriate View radio button in the P...
	2 Select the name of a window template, menu templ...
	3 Choose Copy from the Edit menu.

	The selected item is copied to the clipboard.
	Note
	‰ Artwork can be copied from other sources such as...
	Pasting a resource from another project
	1 Copy or cut a window template, menu template, st...
	2 Click the Project Window of the destination proj...
	3 Choose Paste from the Edit menu.
	4 If a resource with the same name already exists,...

	The item on the clipboard is pasted into the activ...
	Notes
	‰ When copying windows or window items, do not clo...
	‰ Form definition resources should be copied and p...
	Duplicating a resource
	1 You can select the resource using the Project Wi...
	2 Type a unique name for the resource into the dia...

	The name of the new resource is displayed in the P...
	Deleting a resource
	1 Click the View radio button for the type of reso...
	2 Select the name of the resource to be deleted.
	3 Click the Delete button.
	4 Click the Delete button.

	The selected item is now deleted from the project....

	Creating a new window or menu template
	1 Select the View radio button for the type of res...
	2 Click the New button.
	FaceSpan opens an editor for a new, “Untitled” ite...
	Editing an existing window or menu template
	1 Click the View radio button for the type of reso...
	2 Double-click the name of a window or menu templa...

	The appropriate editor opens.

	Importing artwork: pictures, icons, color patterns...
	1 Click the Artwork View radio button.
	2 Click the Import… button.
	3 Locate and select a project, scrapbook, applicat...
	4 Optionally, click the Artwork Chooser's Open Oth...
	5 Select artwork in the Artwork Chooser's scrollin...
	The selected resources are copied into your projec...
	Renaming existing artwork
	1 Click the Artwork View radio button.
	2 Double-click the artwork in the list…

	The Resource Name dialog opens.
	3 Enter the new name for the artwork in the dialog...
	4 Click the dialog's OK button.

	Importing form definition resources and scripting ...
	1 While the Forms, etc. View is selected in the Pr...
	2 Select the name of the project or the name of th...
	3 Select the name of the form or scripting additio...
	The name of the selected form definition resource ...

	Viewing documentation of form resource
	1 Click the View radio button for “Forms, etc.”
	2 Double-click the form resource in the list.
	3 Click the OK or Cancel button to close the dialo...

	Creating a new storage item
	1 Select the Storage View radio button.
	2 Click the New button.
	FaceSpan opens an editor for a new, untitled stora...
	Editing an existing storage item
	1 Click the Storage View radio button.
	2 Double-click the name of a storage item in the l...

	The Storage Item Editor opens for the selected ite...

	Tips: On-screen position of the Project Window
	FaceSpan keeps track, from one session to the next...
	If you want FaceSpan to return to its default sett...

	Chapter�3: Chapter�3: The Window Editor

	The Window Editor
	You should read this chapter if you want to know:
	‰ how to use FaceSpan’s tools to create user inter...
	Inside the Window Editor, you can create, design, ...
	When you create a new window, FaceSpan displays a ...
	While the Window Editor is active, you can use the...

	The Window Template
	Once a window template has been created, it acts a...
	The class property of the window template is set b...
	At any point in the editing process, you can chang...
	The dotted portion of the window template is the a...

	The Tool Palette
	The Tool Palette provides three Cursor tools for m...
	Arrow tool

	Selecting the Arrow tool puts the active window te...
	In addition, you can use Play Mode to test how ite...
	Note
	The project script is not run in Play Mode, so ope...
	I-beam tool
	3

	Using the I-beam tool, you can enter a title or te...
	Object Mover tool

	With the Object Mover tool, you can select, move, ...
	The Object Mover tool changes to a viewfinder when...
	The Object Mover tool changes to a crosshair when ...
	The Object Mover tool changes to a resize arrow wh...
	Note
	‰ The Object Mover tool also changes to a crosshai...
	Object Maker Tools

	There are fifteen Object Maker tools you can use t...
	You can make a window item by selecting the approp...
	Once you’ve created a new window item, the Object ...
	Hint To retain the same Object Maker tool after cr...

	Drag and Drop support in the Window Editor
	If you have Drag and Drop support installed on you...
	Drag and Drop from the Tool Palette

	You can drag an Object Maker Tool’s icon from the ...
	Drag and Drop from the desktop

	You can Drag and Drop selected text and picture cl...
	Note
	‰ If a picture is dragged and dropped onto a windo...
	Drag and Drop from another file

	You can select and drag text from any other source...

	The Property Bar
	The Property Bar displays the values of common pro...
	Note
	‰ While multiple items are selected, certain areas...
	General Controls
	The Property Bar’s general controls include (from ...
	Selected Item popup

	The Selected Item popup (pop-up menu) lists the na...
	Hint This is an easy way to select invisible items...
	Note
	‰You can use the Tab key to move the selection fro...
	Window Item Index textbox

	This textbox displays the index of the selected wi...
	Since index numbers are sequential, changing the i...
	Item Name textbox

	This textbox displays the name property of the sel...
	Note
	‰ If you change the name of a window template, the...
	Properties popup

	When clicked, this popup displays a menu of the pr...
	Properties can also be set using the window templa...
	Note
	‰You can learn more about scripting by reading Par...
	Balloon Help button

	When clicked, the Balloon Help button opens the Ba...
	You can change the content of a window item’s help...
	Hint In addition to balloons containing text, you ...
	Object Script button

	When clicked, the Object Script button opens an ed...
	Note
	‰ To allow the message hierarchy to pass through t...

	Text Property controls
	The Property Bar’s text property controls include ...
	Note
	‰ The font, size, and style properties of each new...
	Font textbox and popup

	The Font textbox and popup display the font proper...
	Note
	‰ The font property of each newly-created window i...
	Size textbox and popup

	The Size textbox and popup display the size proper...
	Note
	‰ The size property of each newly-created window i...
	Style buttons (bold, italic, and underline)

	The Style buttons display the styles (if any) of t...
	Notes
	‰ FaceSpan also supports outline, shadow, condense...
	‰�The style property of each newly-created window ...
	 Justification buttons (left, center, and right)

	The Justification buttons display the justificatio...
	Pen Color popup

	You can use this popup to set the pen color proper...
	Fill Color popup

	You can use this popup to set the fill color prope...

	Position, Width, and Height Property controls
	These four textboxes on the Property Bar indicate ...
	Left Position textbox

	The Left Position textbox displays the distance, i...
	Top Offset textbox

	The Top Position textbox displays the distance, in...
	Width textbox

	The Width textbox displays the width, in pixels, o...
	Height textbox

	The Height textbox displays the height, in pixels,...

	Object Information dialogs
	Object Information dialogs allow you to inspect an...
	You can display the Object Information dialog of a...
	Hint Some objects—windows, textboxes, listboxes, a...

	Instructions
	Using File menu commands
	All window editing centers around the Window Edito...

	Creating a new window template
	1 Highlight the Windows View radio button in the P...
	2 Click the New button.
	FaceSpan creates a new, “Untitled” window template...

	Making a default window template
	You can create a pre-configured “Untitled” window ...

	Opening an existing window template
	1 Click the Windows View radio button in the Proje...
	2 Double-click the name of the window template in ...
	FaceSpan opens the Window Editor for the selected ...

	Saving a window template
	FaceSpan closes the Window Editor, and saves all c...
	Note
	‰ Changes made to a window template can be reverte...

	Reverting to the last saved version of a window te...
	FaceSpan undoes all changes made to the window tem...
	Note
	‰ Changes made to a window template can be reverte...

	Selecting the window itself
	Any previously selected window items are deselecte...

	Creating a new window item in the window template
	1 Click the appropriate Object Maker tool.
	2 Click at the location in the window template whe...
	3 Drag to draw a rectangle the size of the window ...
	If the Object menu's Snap To Size and Snap To Grid...

	Creating a new window item in the window template ...
	1 Click and hold the appropriate Object Maker tool...
	2 Drag the outline of the Object Maker tool to the...
	Notes
	‰ When a new item is created using Drag and Drop, ...
	‰ If the Object menu's Snap To Grid command is che...

	Selecting a window item using the mouse
	1 Choose the Object Mover tool from the Tool Palet...
	2 Click the window item in the window template wit...
	A selection marquee appears around the selected wi...

	Selecting multiple items
	1 Choose the Object Mover tool from the Tool Palet...
	2 While holding the Command key down, drag the ite...
	A selection marquee appears around the selected wi...

	Selecting a window item using the Property Bar
	1 Click the downward arrow of the Selected Item po...
	2 Choose the window item’s name from the list.
	A selection marquee appears around the selected wi...

	Selecting multiple window items
	1 Choose the Object Mover tool from the Tool Palet...
	2 Click the window items in the window template wh...
	A selection marquee appears around the selected wi...

	Deselecting the selected window items
	Cutting a window item
	1 Select the window item to be cut by clicking it ...
	2 Choose Cut Items from the Edit menu.
	The selected window item is copied to the clipboar...

	Copying a window item
	1 Select the window item to be copied by clicking ...
	2 Choose Copy Items from the Edit menu.
	The selected window item is copied to the clipboar...

	Pasting a window item
	1 Copy or cut a window item.
	2 Activate the window template into which you want...
	3 Choose Paste Items from the Edit menu.
	The window item is pasted from the clipboard into ...

	Duplicating a window item
	1 Select the window item(s) to be duplicated.
	2 Choose Duplicate Items from the Edit menu.
	The selected window item(s) are duplicated and des...

	Cloning a window item
	1 Select the window item(s) to be cloned.
	2 Click and drag the selected window item(s) while...
	Clones of the selected window item(s) appear under...

	Deleting a window item
	1 Select the window item to be deleted by clicking...
	2 Press the Delete key.
	The selected window item is deleted from the windo...

	Setting a window item's properties using the Prope...
	1 Select the window item to be edited by clicking ...
	2 Use the Property Bar’s controls to adjust the wi...

	Opening a window item’s Object Information
	1 Select the window item to be edited by clicking ...
	2 Double-click the window item or choose Object In...
	The selected item’s Object Information dialog open...

	Entering text into a window item
	1 Choose the I-Beam tool from the Tool Palette.
	2 Click the window item into which text is to be e...
	3 Type the text.
	Note
	‰ You can also use the item’s Object Information D...

	Testing window items and their scripts
	The window template's grid disappears to indicate ...
	Note
	‰ You can also use the item’s Object Information D...

	Returning the Window Editor to its default positio...
	FaceSpan keeps track, from one session to the next...
	If you want FaceSpan to return to its default sett...

	Tips for Designing Windows
	Windows are the focal point for interaction with t...
	Be conservative

	Doing things differently can be innovative, but so...
	Adapt ideas that work

	As a software user, you have probably encountered ...
	Keep the design simple

	Keep windows simple and purposeful by allowing ade...
	Be task-oriented

	Draw the user’s attention to the task at hand. Pla...
	Order window items logically

	In most Western languages, people read form left t...
	Make tasks simple

	Try to choose combinations of window items that ma...
	Be consistent

	When creating applications with multiple windows, ...
	Test your work

	During the design process, looking at a window con...
	Chapter�4: Chapter�4: The Menu Editor

	The Menu Editor
	You should read this chapter if you want to know:
	‰ how to create and edit run-time menus for your a...
	As with windows, you first create menus as templat...
	Each menu template has a name—the text that will a...
	The menus added to the application’s menu bar at r...
	FaceSpan’s Menu Editor is a creation and editing e...

	The Menu Template
	You can open an editor for an existing menu templa...
	FaceSpan creates a new “Untitled” menu template wh...
	Menu Name textbox

	You can use the Menu Name textbox to name, or rena...
	Note
	‰While the Menu Editor is open, you can press the ...
	Menu Item name textbox

	You can use the Menu Item Name textbox to type the...
	Note
	‰While the Menu Editor is open, pressing Return cr...
	Mark Character popup

	You can assign a mark character to a menu item by ...
	Command Key popup

	You can assign a command key equivalent to a menu ...

	Menu sequence
	You can change menu sequence—the order in which me...
	The Menus View of the Project Window listbox conta...

	Instructions
	Creating a new menu template
	1 Click the Menus View radio button in the Project...
	2 Click the New button.

	Opening an editor for an existing menu template
	1 Click the Menus View radio button in the Project...
	2 Double-click one of the names in the displayed l...
	The Menu Editor for that menu template is displaye...

	Selecting a menu item
	Inserting a new menu item between existing menu it...
	1 While the Menu Editor is open, select the menu i...
	2 Press the Return or Enter key.
	3 Choose Insert Menu Item from the Edit menu.
	The new menu item now displays at the selected pos...

	Inserting a new menu item at the top of a menu
	1 While the Menu Editor is open, select the Menu N...
	2 Press the Return or Enter key.

	Moving a menu item to a different position
	1 While the Menu Editor is open, click the menu it...
	2 Drag the menu item to the desired position withi...

	Creating a divider bar to separate two groups of m...
	FaceSpan will insert a divider bar in the menu ite...
	Note
	‰ Divider bars can be selected, moved, copied, and...

	Deleting an existing menu item
	1 While the Menu Editor is open, click to select t...
	2 Choose Clear Menu Item from the Edit menu.
	Note
	‰ When a Menu editor is closed, FaceSpan searches ...

	Copying a menu item
	1 While the Menu Editor is open, select the menu i...
	2 Choose Copy Menu Item from the Edit menu or type...

	Pasting a menu item
	While the Menu Editor is open…
	1 Select the menu item that the pasted menu item s...
	2 Choose Paste Menu Item from the Edit menu or typ...

	Moving the insertion mark within the Menu Editor
	1 Use the Left Arrow and Right Arrow keys to move ...
	2 Use the Up Arrow key to move the insertion mark ...
	3 Use the Down Arrow key to move the insertion mar...

	Associating a menu template with a window
	1 Choose the Menus View radio button in the Projec...
	2 Drag the menu template’s name to a position belo...
	3 Add the menu template’s name to the value of the...

	Tips for Naming Menus
	Since new users probably won’t understand everythi...
	Syntax

	In general, a menu’s name should be a noun that ex...
	Brevity

	Try to keep the names of menus and menu items shor...
	Clarity

	Menu and menu item names should be self-explanator...
	Consistency

	Names of menus and menu items should be consistent...
	Using an ellipsis

	An ellipsis (Option key-“;”) should be appended to...
	Assigning command key characters

	When choosing command key characters for menu item...
	Organizing the menu bar

	Standard Finder menus (File, Edit…) should always ...
	Organizing menus

	Careful arrangement of menu items in your menus ma...
	Related items

	Group related items together by a common process t...
	Consecutive items

	If several menu items initiate related processes t...
	Convenience

	Position frequently-used items near the tops of me...
	Safety

	Items that permanently change data or terminate pr...
	Chapter�5: Chapter�5: The Storage Item Editor

	Understanding the Storage Item Editor
	You should read this chapter if you want to know:
	‰ what storage items are
	‰ how to create storage items
	‰ how to use storage items in your projects
	A storage item is a piece of data kept in permanen...
	The Storage Editor helps you create, name, define,...
	If you prefer, you can use a script to make, delet...
	The Storage Item Editor
	The Storage Item Editor is used to create, name, a...

	Storage Item Name textbox
	By placing the insertion point inside the Storage ...

	Check Syntax button
	You can click the Check Syntax button to check the...

	Storage Item Value textbox
	By placing the insertion point inside the Storage ...

	Instructions
	Creating a new storage item
	1 Click the Storage View radio button in the Proje...
	2 Click the New button.
	A Storage Item Editor displays.

	Opening the editor of an existing storage item
	1 Click the Storage radio button in the Project Wi...
	2 Double-click one of the names in the displayed l...
	The Storage Item Editor displays. You may now rena...

	Cutting a Storage item
	1 Select the name of the storage item to be cut.
	2 Choose Cut Storage Item from the Edit menu.

	Copying a storage item
	1 Select the name of the storage item to be copied...
	2 Choose Copy Storage Item from the Edit menu.

	Pasting a storage item
	1 Click the Project Window of the destination proj...
	2 Choose Paste Storage Item from the Edit menu.
	3 Give the pasted Storage Item a unique name.
	4 Click OK.

	Duplicating a storage item
	1 Select the name of the storage item to be duplic...
	2 Choose Duplicate Storage Item from the Edit menu...
	3 Give the duplicated Storage Item a unique name.
	4 Click OK.

	Deleting an existing storage item
	1 Click to select the name of the storage item tha...
	2 Choose Clear Storage Item from the Edit menu.
	The selected item is now deleted from the project....

	Chapter�6: Chapter�6: The Script Editor

	Understanding the Script Editor
	You should read this chapter if you want to know:
	‰ how to create and edit scripts using FaceSpan’s ...
	‰ how to use the Script Editor’s on-line reference...
	‰ how to record scripts by example
	‰ how to check script syntax
	FaceSpan’s Script Editor helps you create scripts ...
	Using the Script Editor, you can…
	‰ Generate editable scripts by activating the scri...
	‰ Facilitate scripting by choosing from popup that...
	‰ Edit scripts using Script menu commands such as ...
	‰ Check script syntax for errors that would preven...
	The Script Editor
	The Script Editor is divided into three sections. ...

	Script textbox controls
	Script textbox controls include buttons you can us...
	Record Script button

	When you click the Record Script button, located n...
	If you prefer to control the script recorder from ...
	Hint Recorded scripts may require additional editi...
	Handlers popup

	The Handlers popup is a pop-up menu. Its menu item...
	You can script a handler by choosing a message nam...
	Any custom handlers you have defined for the objec...
	Properties popup

	The Properties popup is a hierarchical menu. Its m...

	Window Items popup
	The Window Items popup is a pop-up menu. Its menu ...
	Hint While using this popup, if you choose the nam...

	Check Syntax button
	The Check Syntax button is identified by a check m...
	Hint FaceSpan also attempts to compile a script wh...
	Note
	‰ For more information about run-time script error...

	Script textbox
	The Script textbox contains the script of the obje...
	Note
	‰ Appendix A: “FaceSpan Menu Reference” gives an e...

	Scripting Language popup
	The Scripting Language popup is located near the b...

	“Drag and Drop” support in the Script Editor
	If you have Drag & Drop installed on your Macintos...

	Instructions
	Using Edit menu commands
	While a Script Editor is active, Edit menu command...

	Opening a script editor for the project script
	A Script Editor containing the project script open...

	Opening a script editor for a window template or w...
	1 Click the Windows View radio button in the Proje...
	2 Double-click the name of a window template.
	3 Click the window template itself or a window ite...
	4 Click the Object Script button in the Property B...
	A script editor containing the script of the selec...

	Checking for errors
	1 Click the Check Syntax button.
	2 Click OK to dismiss the dialog.

	Scripting a message handler
	1 Place the insertion point where a handler is to ...
	2 Choose a handler from the Handlers popup.
	3 Type the instructions to be performed each time ...
	FaceSpan attempts to compile the script if you clo...

	Adding a property reference to a handler
	1 Place the insertion point where the reference is...
	2 Choose a property name from the Properties popup...
	FaceSpan pastes the appropriate property reference...

	Adding an object reference to a handler
	1 Place the insertion point where the reference is...
	2 Choose an object’s name from the Window Items po...
	FaceSpan pastes the appropriate object reference i...

	Recording a script
	1 Place the insertion mark at the location where t...
	2 Click the Record Script button to start recordin...
	3 Perform procedures in a recordable application.
	4 Click the Record Script button again to stop rec...
	FaceSpan attempts to compile the recorded script a...

	AppleScript Formatting
	You can use the AppleScript Formatting command in ...
	The AppleScript Formatting dialog displays when yo...
	You can use this dialog to:
	‰�Select the dialect in which scripts will display...
	‰�Restore AppleScript’s default settings for forma...
	‰�Create global formatting preferences for the tex...

	To customize the text formatting of all AppleScrip...
	1 Select the script element you want to format, by...
	2 Choose the format for that script element, by us...
	3 Click OK.
	Preferences for formatting script text are applied...

	Chapter�7: Chapter�7: Other Scripting Tools

	Other Scripting Tools
	You should read this chapter if you want to know:
	‰ how to display the dictionary of any scriptable ...
	‰ how to use the Message Windoid to send messages ...
	‰ how to use the Message Windoid to log AppleEvent...

	Message Windoid
	Interactive Debugging
	The Message Windoid allows you to get and set prop...
	You can use the Message Windoid in either a collap...
	If you expand the windoid (by clicking its zoom bo...

	Message Windoid controls
	Message Windoid controls include the Scripting Lan...
	Scripting Language popup

	Click and hold the Scripting Language popup to dis...
	Message Log radio button

	Click the Message Log radio button to display the ...
	Event Log radio button

	Click the Event Log radio button to display the Ev...
	Log Events checkbox

	Click the Log Events checkbox to log AppleEvents w...
	Note
	‰Turning off Log Events also turns off Log Replies...
	Log Replies checkbox

	Click the Log Replies checkbox to log replies to A...

	Message Log View
	When the lower textbox in the expanded Message Win...
	The Message Log can be used while a window templat...
	Notes
	‰ When using the Message Windoid, the window or wi...
	‰ You can use the Message Windoid during runtime—t...

	Event Log View
	When the lower textbox is in Event Log View and th...
	You can also leave Log Events and/or Log Replies “...
	Hint Remember that to use the Message Windoid duri...
	Logging events to a file

	In addition to testing a window in Play Mode with ...

	Drag and Drop support in the Message Windoid
	If you have Drag and Drop installed on your Macint...
	‰ Drag and Drop text from the Message Windoid into...
	‰ Drag text from the log area (displayed in the wi...
	‰ Drag text from the Dictionary Windoid and drop i...

	Instructions for Using the Message Windoid
	Displaying the Message Windoid
	The Message Windoid displays.

	Sending a message from the uppermost textbox of th...
	1 Type a statement in the uppermost textbox of the...
	2 Press the Return Key or the Enter key.
	The message is sent.

	Sending a message from the lower textbox of the Me...
	1 If the windoid is not in Message Log View, click...
	2 Press the Enter key.
	The selected message is sent.

	Getting the value of a property of a window item
	1 The Message Windoid should be in Message Log Vie...
	2 Use a get statement.
	3 Press the Return key.
	The value of the requested property of the window ...
	The value of the requested property of the window ...
	Note
	‰ To reference an item not in the frontmost window...

	Setting the value of a property of a window item
	1 The Message Windoid should be in Message Log vie...
	2 Use a set statement
	3 Press the Return key.
	The value of the property of the window item is se...
	The value of the requested property (font) of the ...
	Note
	‰ To reference an item not in the frontmost window...

	Understanding the Dictionary Windoid
	A scriptable application’s dictionary (aete resour...
	When you choose the Dictionary command from the Wi...
	Applications popup
	You display a scriptable application’s dictionary ...
	As a convenience, FaceSpan automatically adds the ...
	When you first open a scriptable application’s dic...
	Notes
	‰ If a previously opened application is not found—...
	‰ The Scriptable Finder’s dictionary is in the Fin...
	Hint If you prefer to open an application dictiona...

	Objects and Events popups
	You can use the Objects and Events popups to view ...

	Drag and Drop support in the Dictionary Windoid
	If you have Drag and Drop installed on your Macint...

	Instructions for Using the Dictionary Windoid
	Opening FaceSpan’s dictionary
	FaceSpan’s application dictionary displays in the ...
	Note
	‰ Some FaceSpan objects have properties that can h...

	Opening a different scriptable application’s dicti...
	1 Choose the Open Other menu item from the Applica...
	2 Locate and select the name of the application wh...
	3 Click the Open button.
	If the selected application is a scriptable applic...

	Adding an item to the Applications popup
	Once a dictionary has been opened, the name of its...

	Removing an item from the Applications popup
	1 Select the item to be deleted while holding down...
	2 Click OK.
	The selected item is deleted.

	Chapter�8: Chapter�8: The Testing Environment

	The Testing Environment
	You should read this chapter if you want to know:
	‰ how to test the way interface objects will respo...
	‰ how to test-run your project’s scripts
	‰ how compilation and run-time errors are handled
	Testing is an integral part of developing any appl...
	FaceSpan’s built-in testing environment includes P...
	The Message Windoid and Testing
	The Message Windoid can be used for testing in Edi...

	Play Mode
	As you create new interface objects, you can test ...
	When Play Mode is initiated, the window template’s...
	You return a window template and it’s objects to E...
	Note
	‰ During Play Mode the project script is not run, ...

	Run Mode
	Run Mode allows you to test-run your project’s scr...
	You initiate Run Mode by clicking the Run button i...
	While the project script is running, the Project W...
	Project Script Errors during Runtime
	If an error is generated during runtime, and the P...
	If you click the Script button in the dialog, Face...

	Window and Window Item Script Errors during Runtim...
	If a window or window item script generates an err...
	FaceSpan displays the error message at the top of ...
	Because the error is in the script of the window t...

	Chapter�9: Chapter�9: The Structure of Application...

	Understanding the Structure of Applications
	You should read this chapter if you want to learn ...
	‰ the components and structure of applications you...
	‰ the components and structure of FaceSpan itself,...
	‰ ways to approach application development.

	Application Components
	A FaceSpan application consists of objects and the...
	Interface Objects
	Most of the objects in a FaceSpan application are ...

	Properties
	Each property of an object has a name and a value;...
	Every object already has several properties define...
	All the pre-defined properties of all the objects ...

	Handlers
	Interface objects can be sent messages. These mess...
	Each kind of interaction causes a message with a u...
	An object has pre-defined ways to respond to inter...
	In addition, you can write handlers (subroutines) ...
	Objects can respond not only to messages caused by...
	The pre-defined command and event messages for all...
	By the way, the technical term for these messages ...

	Scripts
	Every object can have an associated script. The sc...
	You can also give new values to the default proper...
	Properties and handlers are expressed in AppleScri...

	Application Object
	The application, too, is an object, but it is an o...

	Application Structure
	An application that you create with FaceSpan has a...
	The logical structure is your view, as a developer...
	The physical structure is the real arrangement of ...
	Logical Structure
	Logically, the application object and all the inte...
	Object hierarchy

	The objects in a FaceSpan application are organize...
	So the window “contains” the window items, while t...
	Message hierarchy

	The scripts of all the objects follow the same org...
	A message caused by interaction with a physical ob...

	Physical Structure
	There is considerably more that goes into an appli...
	The FaceSpan Extension

	The FaceSpan Extension is a collection of routines...
	A project or application developed with FaceSpan d...
	Similarly, all the default behaviors of the interf...
	Kinds of applications

	A FaceSpan project can be saved as an application ...
	A Complete Application is one that contains the Fa...
	A Miniature Application is one that is composed of...
	You would save a projects as a Miniature Applicati...
	By the way, an application that can be “drop launc...
	How FaceSpan works

	FaceSpan itself is an editing and testing environm...

	Scripting Your Application
	You should read this chapter if you want to know:
	‰ how to intercept and respond to messages with ha...
	‰ how scripts control applications, windows, and m...
	‰ how scripts control other applications,
	‰ how to use scripting additions in your applicati...
	‰ how you might approach application development.

	Messages and Handlers
	When a user interacts with a running FaceSpan appl...
	For example, when someone clicks a push button on ...
	The hilited message handler below sets the title p...
	The variable theObj contains what is called in App...
	Actually, the direct parameter is not necessary. A...
	The parameter theObj is provided as a convenience ...
	Partial References
	When a handler refers to another element within th...
	However, when a handler refers to an element of a ...

	Finding An Object’s Container
	There are times when you do not know the container...
	To obtain a reference to the container of any Face...
	To get a reference to the application there is a s...

	Sending Messages to Other Objects
	Handlers in object scripts can also send messages ...
	The message can be sent using an implicit tell, to...
	For example, here are two instructions that send h...
	If the script of the indicated push button contain...

	Containers Intercept Messages
	When a message is sent to an object whose script d...
	For example, if the script of a push button receiv...
	When a message is handled by an object’s container...

	Unhandled Messages
	If one of FaceSpan's pre-defined messages is not h...
	However, if a message that you defined is not hand...

	Continuing Messages
	Even when an object handles a message, you can for...
	Since the continue instruction includes the object...

	Necessary Continuations
	There are a few messages for which you would usual...
	If a message name is in the past tense, then the d...
	The close message, for example, is sent to a windo...

	Handling Intercepted Messages
	The default continuation of messages to the contai...
	For example, imagine that a window named “Colors” ...
	Even though the window handles the message, not th...
	The direct parameter reference is useful because t...

	Custom Messages with Positional Parameters
	The same effect can be achieved by sending and han...
	Then the script of label “whatColor” would need to...
	The messages you define can pass positional parame...
	Since the label is the default object of the showC...

	Messages with Labeled Parameters
	Your handlers can also accept messages with labele...
	The script of each push button in our example migh...
	The script of label “whatColor” handles the showCo...
	In fact, it is the format of this handler’s first ...

	Properties and the “my” Reference
	Let us say that a property is declared in the scri...
	For example, if the property stat is declared in t...
	If stat is instead declared in the script of the a...
	A script in an object outside the object in which ...
	Declare a property at the top of the script of any...
	Note that properties are defined with initial valu...

	Global Variables
	FaceSpan scripts can also use global variables. A ...
	Here are some handlers (possibly in different obje...
	Unlike properties, global variables are not inital...
	FaceSpan’s storage item objects are global, can be...

	Controlling Windows
	Opening Windows
	When a FaceSpan application opens a window at run ...
	This statement looks for a window template resourc...
	Since each window opened in a FaceSpan application...

	Setting Properties in an open window Statement
	You’ll often need to adjust some properties of a w...
	When window “User Info” opens, it will be at posit...
	The record in the example above refers only to the...
	For example, the following open window statement s...
	You may list as many records as needed in the with...
	Note the extra brackets. They are necessary when y...

	Retrieving Properties from a Modal Dialog
	You can retrieve values set during user interactio...
	In the example above, a record containing the heig...
	The place-holder values were simply the digit 0. A...
	Thus, if you wish to find the name of the button t...
	Like the with properties parameter, the returning ...
	When properties of several items are retrieved in ...

	An Alternative Method for Retrieving Properties
	The returning parameter, used for multiple assignm...
	The returning parameter is a “pattern matching” pa...
	Here we use the returning parameter to retrieve wi...
	The retrieved values are returned directly to the ...
	Note that the word “properties” is not a part of t...

	Setting and Retrieving Properties in One Statement...
	The with properties and returning properties param...
	Or you could change the order:
	You can use returning instead of returning propert...

	Preserving and Restoring the Changes of a Window
	As an application window is closed, its changes pr...
	To preserve and restore the changes of a window, w...
	Then create a handler that stores the changes prop...
	Once saved in this manner, the changes can be rest...

	Saving a User-Edited Window
	One way to save the state of a window that was edi...
	Saving a window in this manner replaces the window...
	To avoid replacing the original window template re...

	Controlling Menus
	Application and Private Menus
	In FaceSpan applications, a menu can belong to the...

	Handling Chosen Messages
	Each time the user chooses a menu item from a menu...
	In the window’s script there will be a handler for...
	This handler intercepts chosen messages sent to th...
	Only document window scripts and the project scrip...
	By the way, FaceSpan automatically handles the Cut...

	Controlling Other Applications
	The primary purpose of AppleScript is to control o...
	Since we are discussing various kinds of applicati...
	Scriptable Applications
	A scriptable application is one that has been spec...

	Terminology
	AppleScript provides a general language for descri...
	You have to learn the terminology of a scriptable ...
	Better still, Apple and a consortium of applicatio...

	Scripting Support
	While you create scripts to control a target appli...

	Keeping Ideas in Order
	When you develop a FaceSpan application to control...
	To keep the terminology straight, note that:
	‰ AppleScript is the overall language that provide...
	‰ FaceSpan’s terminology refers mainly to the set ...
	‰ A target application’s own terminology alone con...
	By the way, you can control the formatting of scri...
	See “An Approach to Application Development,” late...

	Scripting Target Applications
	The purpose of AppleScript, and a major purpose of...
	Guidelines

	As described above, a tell statement is used to di...
	When AppleScript attempts to compile or decompile ...
	If you had just entered the text of this script, y...
	On the other hand, if your client tries to open a ...
	One way to avoid the problem is to make sure that ...
	No variables for targets

	It is important to understand why the following ex...
	The application must be known when the script is c...
	Similarly, if you try to open a script for editing...
	Organizing your scripts

	AppleScript tries to find a terminology dictionary...
	The solution to the problem rests upon an appropri...
	Perhaps the best solution is to use a script objec...
	The script object would be in the project script i...
	Another solution is to try to use just one tell st...
	This subroutine would be located centrally, most l...
	Points of view

	You can script the target application from one of ...
	The other view is to make the FaceSpan application...
	Scripting the Finder

	The Finder, the application that displays the desk...
	Here is a very simple sample script:
	The scriptable Finder is also recordable. You can ...

	Scripting Other FaceSpan Applications
	The easiest kind of application you can script is ...
	Because there is a textbox “txtTitle” and a window...
	The other reason that a FaceSpan application can b...
	Then another application can script “TestApp” more...
	In other words, you have the opportunity to make y...

	Scripting FaceSpan Itself
	FaceSpan itself can be the target of your scriptin...
	There are two ways in which you might script FaceS...
	The other way to script FaceSpan itself is to crea...
	Your scripts can find out how many items there are...

	Using Scripting Additions
	AppleScript Language Extensions
	Scripting additions are files that provide additio...
	Because they are written in Pascal, C or assembly ...
	Scripting additions have dictionaries that you can...
	A scripting addition is often called an “OSAX,” wh...

	Writing Scripting Additions
	Scripting additions are written in Pascal, C, or a...

	Using Scripting Additions in Applications
	If it becomes necessary or useful to employ script...
	1 Select the Forms, etc. View radio button in the ...
	2 Click the Import button.
	3 Locate and select the scripting addition, then c...

	A copy of the scripting addition is brought into t...
	Please note, however, that while you are developin...
	It also is important to know that a single scripti...
	Copyrights

	Remember that many scripting additions are not you...

	An Approach to Application Development
	This section offers suggestions about how to start...
	Incremental Development
	The FaceSpan development and testing environment i...

	Interface First
	There are several reasons why you should develop t...
	‰ Creating the interface first makes you consider ...
	‰ Controlling the interface might require more scr...
	‰ The interface often is most critical to a projec...
	‰ Since the interface is the “public” part of the ...
	A good way to avoid confusion between the terminol...
	Finally, write the scripts to control the target a...

	Scripting and Code Structure
	There are two general ways to structure a FaceSpan...
	In fact, a good way to organize a project is to di...
	This organization then requires that you include b...

	Refinement
	There always is more work to do after an applicati...
	The first thing to do is to delete all the unused ...
	In your scripts, remove unused properties and vari...
	Make another pass through all the scripts and make...
	Be sure that you have commented your scripts adequ...
	Finally, do not forget to set up the “About...” di...

	Chapter�10: Chapter�10: Scripting Your Application...

	Applications
	The application object is the overall container or...
	There are several command and event messages sent ...
	Since the application contains all other objects, ...
	Applications can be launched from the desktop when...
	Reference Forms
	There are two ways to refer to the application obj...
	The cursor property of the current application wou...
	Most application properties are unique, however, s...

	Application Properties
	clipboard
	The data contained on the Clipboard.
	Value Class
	any (see notes)
	Examples
	Notes
	‰ The value class of the clipboard property depend...
	‰ To find the value class of the clipboard, it mus...

	command down
	Is the Command key pressed?
	Value Class
	boolean
	Examples
	Note
	‰ Command down is a read-only property.

	control down
	Is the Control key pressed?
	Value Class
	boolean
	Examples
	Note
	‰ Control down is a read-only property.

	cursor
	The identity of a cursor resource.
	Value Class
	Examples
	Notes
	‰ Cursor can represent the name or id of a cursor ...
	‰ Cursor can be set to the constant standard to re...
	‰ If cursor is set to none, it becomes invisible u...
	‰ You can get or set the cursor property; this let...

	focus
	The window item that is receiving keystrokes (or w...
	Value Class
	reference
	Examples
	Notes
	‰ The focus of an application remains set even whi...
	‰ The focus of an application is a read-only prope...

	frontmost
	Is the application active?
	Value Class
	boolean
	Examples
	Note
	‰ Frontmost of an application is a read-only prope...

	heap space
	Reports the amount of free memory available to the...
	Value Class
	integer
	Example
	Notes
	‰ Heap space and stack space help you to better mo...

	idle delay
	The frequency with which the application receives ...
	Value Class
	integer
	Examples
	Notes
	‰ The idle delay is given in seconds; the default ...
	‰ If a window and its application have different i...
	‰ An idle delay of 0 allows the application to rec...

	interruptible
	Can Command-period cancel scripts?
	Value Class
	boolean
	Examples
	Note
	‰ Interruptible is a read-only property.

	mouse down
	Is the mouse button pressed?
	Value Class
	boolean
	Examples
	Note
	‰ Mouse down is a read-only property.

	mouse position
	The position of the mouse in global coordinates.
	Value Class
	Examples
	Notes
	‰ The position {0, 0} is the upper-left corner of ...
	‰ Mouse position is a read-only property.

	name
	The name of the application.
	Value Class
	string
	Examples
	Note
	‰ Name is a read-only property.

	option down
	Is the Option key pressed?
	Value Class
	boolean
	Examples
	Note
	‰ Option down is a read-only property.

	screen bounds
	The bounding rectangles of all attached displays.
	Value Class
	a list of bounding rectangles
	Examples
	Notes
	‰ The first rectangle in screen bounds is the boun...
	‰ Screen bounds is a read-only property.

	screen depths
	Bits per pixel of all attached displays.
	Value Class
	a list of small integer
	Examples
	Notes
	‰ The first number in screen depths is the color d...
	‰ Screen depths is a read-only property.

	script
	The compiled script of the application.
	Value Class
	script
	Examples
	Notes
	‰ When a string containing a script is assigned to...
	‰ Coercing the script property to string or text d...

	shift down
	Is the shift key pressed?
	Value Class
	boolean
	Examples
	Note
	‰ Shift down is a read-only property.

	stack space
	Reports the amount of free memory available to the...
	Value Class
	integer
	Example
	Notes
	‰ Heap space and stack space help you to better mo...

	ticks
	The number of ticks (60ths of a second) since the ...
	Value Class
	integer
	Example

	version
	The version of FaceSpan that was used to create th...
	Value Class
	string
	Examples
	Notes
	‰ The version property is given as a string, not a...
	‰ Version is a read-only property.

	Application Command and Event Messages
	The application object is the overall container or...
	See the window and window item references for comm...
	Listed here are a few additional command and event...
	Any message sent by an event can also be sent by a...
	click as user
	Lets you script “click” the mouse anywhere on the ...
	Example
	Note
	‰ This command lets your scripts mimic the actions...

	do script
	Command to execute a script.
	Parameters
	Examples
	Note
	‰ The do script command is in FaceSpan mainly for ...

	idle
	Idle event messages sent by the system.
	Parameters
	Notes
	‰ Idle events are received from the system once ev...
	‰ If a window and its application have different i...
	‰ A window can continue the idle message to its ap...
	‰ The application will not send idle messages if a...

	make
	Command to create a new object.
	Parameters
	Examples
	Notes
	‰ A new window can be made at any time, from any s...
	‰ A window cannot make a new window item within it...
	‰ When making a window item, the at parameter, if ...
	‰ When making a window item, the with properties p...
	‰ New listbox items can be made in any listbox.
	‰ New menu items can be made in any menu currently...
	‰ New menu items can be made in any popup; some me...
	‰ New storage items can be made at any time from a...

	open
	Drop-launch event message from the system.
	Parameters
	Example
	Notes
	‰ An application is drop-launched by dropping desk...
	‰ The open message takes a single parameter whose ...
	‰ The open message is sent even if the application...
	‰ An open message is not sent when the application...
	‰ The open message is not sent when a window opens...

	print / print setup
	Provides control over paper margins and printing d...
	Example
	Notes
	‰ The first command in the example above would cre...
	‰ The second command in the example above would pr...
	‰ Items without scrollbars appear on every page. I...

	quit
	Command to quit execution.
	Parameters
	(none)
	Example
	Note
	‰ As shown in the example, a quit message that is ...

	run
	Event message, from the system, to run the applica...
	Parameters
	Examples
	Notes
	‰ The run message is sent when the user double-cli...
	‰ The run message is not sent when the user drop-l...
	‰ The run message can be sent (or not) when an app...
	‰ All the “loose” statements in the project script...
	‰ You can put an actual run handler into the proje...

	save
	Command to save the current configuration of a win...
	Parameters
	Examples
	Notes
	‰ If you save a window, close and reopen it, it wi...
	‰ The window’s saved configuration persists from o...

	type as user
	This command lets you type a sequence of character...
	Example
	Note
	‰ This command lets your scripts mimic the actions...

	Chapter�11: Chapter�11: Applications
	Chapter�12: Chapter�12: Windows

	Windows
	A window in a running application is composed of a...
	This chapter describes the three classes of window...
	Classes of Windows
	Like the window items they contain, window objects...
	Each window object can be set to any one of the th...
	Document windows are generally used to display dat...
	Modal dialogs are typically used to obtain informa...
	Once a modal dialog has opened on screen, the user...
	A modal dialog is surrounded by a four-pixel-thick...
	Floating windoids often are used to display contro...

	Reference Forms
	Windows can be referenced by name, by index, by id...
	‰window “Preferences”
	‰window 3
	‰window id 20973248
	‰window of theObj
	‰window of menu “Sales”
	Note that the id number is not fixed; it may diffe...

	Properties of windows
	bounds
	The global coordinates of the content area of the ...
	Value Class
	Examples
	Note
	‰ The bounds of a window are expressed as offsets,...

	changes
	The changeable properties of the window and its wi...
	Value Class
	Examples
	Notes
	‰ The changes property is a list of records; each ...
	‰ The first record returned contains the changes t...
	‰ Changes is not a complete list of properties (co...
	‰ All window items of the window are represented i...
	‰ When you close a modal dialog whose open window ...

	class
	The object class of the window.
	Value Class
	Examples
	Notes
	‰ See the form property; it is the property that e...
	‰ See also the modal and floating properties.
	‰ Class is a read-only property; it cannot be set....

	closeable
	Does the window have a close box for closing it?
	Value Class
	boolean
	Examples
	Notes
	‰ Closeable is always false if titled of the windo...

	closing item
	Indicates the window item that caused a window to ...
	Value Class
	Examples
	Notes
	‰ The closing item of a currently open window is n...
	‰ If a modal dialog is closed by the close command...
	‰ If the auto close property of a button is true a...
	‰ Closing item normally is used by the returning p...
	‰ See the discussion of the close message.
	‰ Closing item is a read-only property.

	contents
	The value of the changes property of the window.
	Value Class
	list of record
	Examples
	Note
	‰ The value of the contents property of a window i...

	description
	Complete record of the names and values of the pro...
	Value Class
	Examples
	Notes
	‰ The first record in the list describes the windo...
	‰Compare the changes property.
	‰ Description is a read-only property.

	droppable
	Can the window have things dropped on it?
	Value Class
	boolean
	Examples
	Notes
	‰ For the droppable property to be true, the syste...

	enabled
	Is the window enabled?
	Value Class
	boolean
	Examples
	Notes
	‰ The enabled property is true if the window is ac...
	‰ Enabled is a read-only property.

	fill color
	The color of the window’s background.
	Value Class
	Examples
	Notes
	‰ The fill color is always returned as an RGB valu...

	floating
	Is the window a floating windoid (palette)?
	Value Class
	boolean
	Examples
	Notes
	‰ The form, floating and modal properties of a win...
	‰ Floating and modal cannot both be true at the sa...
	‰ If floating and modal are both false, the window...
	‰ A script (in the Message Windoid) can set floati...
	‰ If the form, floating, or modal property is chan...

	focus
	The window item (in this window) that is receiving...
	Value Class
	reference
	Examples
	Notes
	‰The focus of a window remains set even while the ...
	‰ If you set the focus to a window item, that wind...
	‰ Selected content in inactive windows can be loca...
	‰ If the window contains no editable textboxes or ...

	font
	The default font of window items in the window.
	Value Class
	Examples
	Notes
	‰ If the font of a window item, such as a button, ...
	‰ Changing the font property of a window changes t...
	‰ Once the font of a window item is set, the windo...

	form
	The form of the window as defined by a form defini...
	Value Class
	Examples
	Notes
	‰ The form property of a window can be changed onl...
	‰ The form of a window determines how the window l...
	‰ The form definition resources for windows (as op...
	‰ Document window is the default form.
	‰ If the form, floating, or modal property is chan...

	grow item
	A single window item that resizes when the window ...
	Value Class
	reference
	Examples
	Notes
	‰ The grow item property is included for backward ...
	‰ When a window is resized, window items above or ...
	‰ Window items aligned with the bottom or right ed...
	‰ When constructing a window that is to contain a ...

	height
	The height of the content area of the window, meas...
	Value Class
	integer
	Examples
	Notes
	‰ Window height measurements do not include title ...
	‰ When the height changes, the bounds property als...

	id
	The current identification number of the window.
	Value Class
	integer
	Examples
	Notes
	‰ Each window receives an id when it is opened, an...
	‰ A window must be opened by name, since its id do...
	‰ Id is a read-only property.

	idle delay
	The frequency with which the window receives idle ...
	Value Class
	integer
	Examples
	Notes
	‰ The idle delay value is expressed in whole secon...
	‰ If a window and its application have different i...
	‰ If the idle delay is 0, the window receives idle...
	‰ Your scripts can send idle messages; this will a...

	index
	The position of an open window in the front-to-bac...
	Value Class
	integer
	Examples
	Notes
	‰ The front most window has an index of 1.
	‰ The commands send to back and bring to front, as...
	‰ The index property is read-only.

	max size
	The largest size to which the window can be resize...
	Value Class
	Examples
	Notes
	‰ The max size property is given in pixels.

	min size
	The smallest size to which the window can be resiz...
	Value Class
	Examples
	Notes
	‰ The min size property is given in pixels.
	‰ Be sure to set the min size of any resizable win...

	modal
	Is the window a modal dialog?
	Value Class
	boolean
	Examples
	Notes
	‰ The form, floating and modal properties of a win...
	‰ Floating and modal cannot both be true at the sa...
	‰ If both floating and modal are false, the window...
	‰ A script (in the Message Windoid during editing)...
	‰ If the form, floating, or modal property is chan...

	name
	The name of the window. A window now has a name pr...
	Value Class
	string
	Examples
	Notes
	‰ To change a window’s name without losing your re...
	‰ If a script changes the name of a window in a ru...
	‰ For compatibility, the name property stored for ...
	‰ If a script had been changing a window’s title b...

	pen color
	The color of the window’s foreground, usually its ...
	Value Class
	Examples
	Note
	‰ The pen color property is always returned as an ...

	position
	The position of the content area of the window on ...
	Value Class
	Examples
	Notes
	‰ The position property is always returned as a po...
	‰ When expressed as a point, the position is the l...
	‰ When expressed as a constant:
	Each staggered window is positioned 16 pixels belo...

	private menus
	Menus displayed on the menu bar while the window i...
	Value Class
	Examples
	Notes
	‰ A window’s private menus property does not inclu...
	‰ Any menu can be among the private menus of more ...

	re
	A reference to a window item in a description reco...
	Value Class
	Examples
	Notes
	‰ The re property is a component of records return...
	‰ The re property is a component of records accept...
	‰ When you give a value for the re property, you m...
	‰ Re is always returned with the value of the id p...
	‰ For more information, see the closing item, desc...
	‰ If you give an re value for a window item that d...

	resizable
	Does the window have a size box for changing its s...
	Value Class
	boolean
	Examples
	Note
	‰ Resizable is always false if the titled property...

	script
	The compiled script of the window.
	Value Class
	script
	Examples
	Notes
	‰ When the text of a script is assigned to the scr...
	‰ An error occurs if the text of the assigned scri...
	‰ As soon as a script has been successfully assign...

	size
	The default point size of text in window items in ...
	Value Class
	integer
	Examples
	Notes
	‰ If the size property of a window item, such as a...
	‰ Changing the size property of a window changes t...
	‰ Once the size property of a window item has been...

	style
	The default style of text in window items in the w...
	Value Class
	text style info
	Examples
	Notes
	‰ If the style property of a window item, such as ...
	‰ Changing the style property of a window changes ...
	‰ Once the style property of a window item has bee...
	‰ For information about the text style info class,...

	text to speech
	Text to Speech works with text boxes.
	Value Class
	String
	Example
	Notes
	‰ If the system has the appropriate “Text to Speec...
	‰ You can store a list of voices by setting a vari...

	title
	A window now has a title property that is distinct...
	Value Class
	string
	Notes
	‰ For compatibility, the name property stored for ...
	‰ If a script had been changing a window’s title b...

	titled
	Does the window have a title bar?
	Value Class
	boolean
	Examples
	Notes
	‰ A document window cannot be closeable, resizable...
	‰ A modal dialog is not movable unless its titled ...

	uniform styles
	The default text styles that apply to the window i...
	Value Class
	text style info
	Examples
	Notes
	‰ If the uniform styles property of a window item,...
	‰ Changing the uniform styles property of a window...
	‰ Once the uniform styles property of a window ite...
	‰ For information about the text style info class,...

	visible
	Is the window visible?
	Value Class
	boolean
	Examples
	Notes
	‰ Even an invisible window has a valid index and a...
	‰ Another way to make a window “invisible” is simp...
	‰ To find out whether or not a window is open, use...

	width
	The width, in pixels, of the content area of the w...
	Value Class
	integer
	Examples
	Notes
	‰ The width of a modal dialog does not include its...
	‰ Changing the width of a window changes its bound...

	zoomable
	Does the window have a zoom box?
	Value Class
	boolean
	Examples
	Note
	‰ Zoomable is always false if titled of the window...

	zoomed
	Is the window zoomed to its maximum size?
	Value Class
	boolean
	Examples
	Note
	‰ When the zoomed property is set by a script, the...

	Window Command and Event Messages
	Because windows contain the window items, any mess...
	Listed here are a few additional command and event...
	Any message sent by an event can also be sent by a...
	activated
	Event message sent when the window has become acti...
	Parameters
	Examples
	Notes
	‰ A window becomes active when it is brought to th...
	‰ A window becomes active also when it is the fron...
	‰ The active window is distinguished by the active...
	‰ If you are using the draw command to selectively...

	bring to front
	Command to bring the window to the front of the la...
	Parameters
	Examples
	Notes
	‰ The index of the window becomes 1; the indices o...
	‰ Any handler for this message must continue the m...

	chosen
	Event message sent when the user chooses a menu it...
	Parameter
	Examples
	Notes
	‰ The chosen message is sent to the front window i...
	‰ The window should handle the chosen message if i...
	‰ See Chapter 10: “Scripting Your Application,” fo...

	click
	Event message sent when the application user click...
	Parameters
	Examples
	Notes
	‰ The coordinates of the mouse are relative to the...
	‰ The constants for the upon parameter specify the...
	‰ The ticks parameter is given as 60ths of a secon...
	‰ Any handler for the click message must continue ...
	‰ If the upon parameter is not accepted and contin...
	‰ If a click handler in the window needs a certain...

	close
	Event message sent as the window is closed.
	Parameters
	Examples
	Notes
	‰ If a window of a running application is closed a...
	‰ If a window of a running project is closed by cl...
	‰ If a window of a running project is closed by a ...
	‰ Any handler for this message must continue the m...

	deactivated
	Event message sent to the active window when it be...
	Parameters
	Notes
	‰ The front window is deactivated when another win...
	‰ The deactivated message is not sent to a window ...

	delete
	Command to delete the specified window item, menu ...
	Parameters
	Examples
	Notes
	‰ The delete command cannot delete a window item f...
	‰ Delete is the inverse of the make command.

	draw
	Command to redraw the window and all window items....
	Parameters
	Examples
	Notes
	‰ When a handler makes visible changes to a window...
	‰ If you tell the window to draw, all the window i...
	‰ See the idle message discussion for an example o...

	get data
	Command to get some data from the window.
	Parameters
	Examples
	Notes
	‰ The value returned by get data is identical to t...
	‰ Use the as parameter to coerce the default value...
	‰ The get data command is included in FaceSpan for...

	idle
	Event message sent by the application when no othe...
	Parameters
	Examples
	Notes
	‰ The idle message is sent to the window by the ap...
	‰ If a window and its application have different i...
	‰ As shown in the first example, the idle message ...

	make
	Command to create a new object.
	Parameters
	Examples
	Notes
	‰ A new window can be made at any time, from any s...
	‰ A window cannot make a new window item within it...
	‰ When making a window item, the at parameter, if ...
	‰ When making a window item, the with properties p...
	‰ New listbox items can be made in any listbox.
	‰ New menu items can be made in any menu currently...
	‰ New menu items can be made in any popup; some me...
	‰ New storage items can be made at any time from a...

	moved
	Event message sent when the window is moved by use...
	Parameters
	Examples
	Notes
	‰ Changing a window’s position property does not c...

	open
	Command to open a window.
	Parameters
	Examples
	Notes
	‰ The optional returning properties parameter or r...
	‰ An open window command with a returning properti...
	‰ An open window command with a returning paramete...
	‰ See the discussions of the changes and closing i...
	‰ Use a single record to set or get the properties...
	‰ To find out whether or not a window is open, use...
	‰ See Chapter 10: “Scripting Your Application,” fo...

	prepare
	Event message sent just before a window is opened....
	Parameters
	Examples
	Note
	‰ The prepare message is sent to a window after an...

	resized
	Event message sent when the window is resized or z...
	Parameters
	Examples
	Notes
	‰ A resized message is not sent when the bounds pr...

	send to back
	Command to send the window to the back of the laye...
	Parameters
	Examples
	Notes
	‰ The indices of all open windows behind this one ...
	‰ Any handler for this command must continue the c...

	sound
	You can play and record sounds as either “snd” res...
	Example
	Notes
	‰ The new play commands simply initiate the sounds...
	‰ To import a “snd” file, select the “Forms, etc.”...

	zoom in
	Event message sent when the window is to zoom in.
	Parameters
	Notes
	‰ The default response to the zoom in message is t...
	‰ The zoomed-in size of a window cannot be less th...
	‰ Any handler for this message must continue the m...

	zoom out
	Event message sent when the window is to zoom out....
	Parameters
	Notes
	‰ The default response to the zoom out message is ...
	‰ The zoomed-out size of a window cannot be greate...
	‰ Any handler for this message must continue the m...

	Special Considerations
	There are several other features of windows that y...
	Scripts to Edit Windows
	When a window template is open for editing in Face...
	First, a script can get information about the wind...
	‰ If a window is being edited, it is window 1.
	‰ The number of window items in the widow can be o...
	‰ The indices of the currently-selected window ite...
	Given this information, you can get and set any pr...
	In addition, you can use the make and delete comma...

	Every, Whose and Where
	You can use the standard AppleScript selection ter...
	Window items can be selected by property values as...

	Restrictions on the Quit Command
	If a handler in a window executes an unqualified q...
	The window’s script should have quit current appli...

	Opening Several Copies of a Window
	You can open several windows based upon the same w...

	Window Items
	Window items are interface objects—buttons, labels...
	A window item is defined and controlled by a set o...
	Some properties and messages are common to all win...
	Reference Forms
	A window item can be referenced by its name, id or...
	‰ push button “pshOK”
	‰ push button 1
	‰ push button id 7003
	‰ window item 3
	‰ window item “pshOK”
	Note that when you refer to a window item by index...
	To obtain a reference to the window that contains ...
	where theObj is a reference to the window item.
	A reference to a window item is implemented in ter...
	Consider these three statements:
	The reference theObj really is referring to window...

	Common Properties
	These properties are common to most or all window ...
	balloon
	Text of a message or name of a picture resource to...
	Value Class
	string
	Examples
	Notes
	‰ The balloon can be made to display a picture ins...
	‰ If you want the balloon to display text that is ...

	bounds
	Offsets of the four sides of a window item.
	Value Class
	Examples
	Notes
	‰ The offsets are measured in pixels from the top-...
	‰ Changing a window item’s bounds also changes its...

	changes
	The properties of the window item that can be chan...
	Value Class
	Examples
	Notes
	‰ In the example shown, the changes property would...
	‰ The changes record in no way implies that the co...
	‰ If a window item has no properties editable by t...
	‰ The changes property exists simply by analogy to...
	‰ Changes is a read-only property.

	class
	Object class of the window item.
	Value Class
	Examples
	Notes
	‰ The standard data types in AppleScript have clas...
	‰ Class is a read-only property.

	contents
	The value of the “typical” property of the window ...
	Value Class
	Examples
	Notes
	‰ In general, if you wish to obtain and operate up...
	‰ See the discussions of contents in the detailed ...
	‰ When the form of a listbox, popup or menu is not...
	‰ When a textbox or table cell has a key filter as...
	‰ If the window item displays its contents, the de...
	‰ The contents of a window is the same as its chan...

	description
	A record of properties describing the window item....
	Value Class
	Examples
	Notes
	‰ The description does not include some properties...
	‰ Description is a read-only property.

	drag locked
	Can the window item be dragged during editing?
	Value Class
	boolean
	Notes
	‰ If the drag locked property is true, the window ...
	‰ The drag locked property applies while using the...
	‰ When the cross-hair cursor passes over a drag lo...
	‰ Drag locked is false when a window item is creat...

	draggable
	Can the item be dragged?
	Value Class
	boolean
	Examples
	Notes
	‰ See the discussions of the drag and drop message...
	‰ Draggable is false by default.

	droppable
	Can the item have things dropped onto it?
	Value Class
	boolean
	Examples
	Notes
	‰ To be droppable, a window item must be visible.
	‰ A box must have a fill, or else only its border ...
	‰ See the discussions of the drag and drop message...
	‰ Droppable is false by default.

	enabled
	Is the window item responsive to user interactions...
	Value Class
	boolean
	Examples
	Notes
	‰ Enabled window items are normal in appearance an...
	‰ If enabled of a textbox is false, its contents c...
	‰ By default, enabled is true.

	fill color
	Color of the window item’s background.
	Value Class
	Examples
	Notes
	‰ The fill color property is always returned as an...
	‰ The specified fill color replaces all the white ...
	‰ The fill color property defaults to white.

	font
	The font in which a window item’s title or content...
	Value Class
	string
	Examples
	Notes
	‰ The value of the font property is the font’s nam...
	‰ If the font of a window item, such as a button, ...
	‰ Changing the font property of a window changes t...
	‰ To refer to the font of a selection within a tex...
	‰ The font defaults to “Chicago.”

	growth
	How the window item’s bounds respond to resizing i...
	Value Class
	Examples
	Notes
	‰ The growth property is a list of four integers, ...
	‰ All the important growth properties are represen...
	‰ Any growth property value that is normally retur...
	‰ The growth of a window item defaults to none.

	height
	Height in pixels of a window item.
	Value Class
	integer
	Examples
	Note
	‰ Setting the value of the height changes the valu...

	id
	Unique identification number of a window item.
	Value Class
	integer
	Examples
	Notes
	‰ Each window item receives an id when it is creat...
	‰ The id property is assigned starting with 7001. ...
	‰ Id is a read-only property.

	index
	Order of a window item in the back-to-front layeri...
	Value Class
	integer
	Examples
	Notes
	‰ The window items in each window are indexed sequ...
	‰ Increasing the index of a window item moves it f...
	‰ Changing the index of any window item other than...
	‰ An object reference—that is, a reference to the ...

	name
	Name of a window item.
	Value Class
	string
	Examples
	Notes
	‰ Window items do not display the values of their ...
	‰ Window item names default to a three-letter pref...

	pen color
	Color of the window item’s drawn areas, usually it...
	Value Class
	Examples
	Notes
	‰ The pen color property is always returned as an ...
	‰ The specified pen color replaces all the black a...
	‰ By default, pen color is black.

	position
	Position of a window item within its window.
	Value Class
	Examples
	Notes
	‰ The position of a window item consists of the co...
	‰ Changing a window item’s position also changes i...

	script
	Compiled script of a window item.
	Value Class
	script
	Examples
	Notes
	‰ When the text of a script is assigned to the scr...
	‰ An error occurs if the text of the assigned scri...
	‰ As soon as the script property has been successf...
	‰ A script can be decompiled into a string simply ...
	‰ After a script has been copied to a variable (as...
	‰ Window items by default have no script, not simp...

	size
	Size in points of a window item’s displayed text.
	Value Class
	integer
	Examples
	Notes
	‰ If the size of a window item, such as a button, ...
	‰ Changing the size property of a window changes t...
	‰ To adjust the line spacing of text contained in ...
	‰ To refer to the size of a selection within a tex...
	‰ The default size is 12 points.

	style
	Text style of the first character of the contents ...
	Value Class
	text style info
	Examples
	Notes
	‰ If the style of a window item, such as a button,...
	‰ Changing the style property of a window changes ...
	‰ To refer to the style of a selection within a te...
	‰ The default style is simply plain text.
	‰ For information about the text style info class,...

	uniform styles
	Text styles that are uniformly on and off for all ...
	Value Class
	text style info
	Examples
	Notes
	‰ If the uniform styles of a window item, such as ...
	‰ Changing the uniform styles property of a window...
	‰ To refer to the uniform styles of a selection wi...
	‰ For information about the text style info class,...

	visible
	Is the window item visible in its window?
	Value Class
	boolean
	Examples
	Notes
	‰ If visible is false, the window item cannot rece...
	‰ Invisible window items can be forced to draw, us...
	‰ A window item can lie beyond the bounds of the w...
	‰ Visible defaults to true.

	width
	Width in pixels of a window item.
	Value Class
	integer
	Examples
	Note
	‰ Changing the width of a window item changes its ...

	Window Item Command and Event Messages
	Certain command and event messages can be sent to ...
	Any event message can be sent by a command; the co...
	adjust size
	Command to adjust the size of the window item to f...
	Parameters
	Examples
	Notes
	‰ Labels, textboxes and listboxes adjust their hei...
	‰ Popups adjust their heights to accommodate the f...
	‰ Gauges (scrollbars) adjust their widths (the nar...
	‰ Tables adjust their widths and heights to accomm...
	‰ Pictboxes, icons and movies grow or shrink to fi...
	‰ The position of a window item remains stationary...

	click
	Event message sent when the application user click...
	Parameters
	Examples
	Notes
	‰ The coordinates of the mouse are relative to the...
	‰ The constants for the upon parameter specify the...
	‰ The ticks parameter is given as 60ths of a secon...
	‰ Any handler for the click message must continue ...
	‰ If the upon parameter is not accepted and contin...
	‰ If a click handler in the window needs a certain...

	drag
	Event message sent when a window item is about to ...
	Parameters
	Examples
	Notes
	‰ The data parameter is a list whose values descri...
	‰ You can change the contents of the data paramete...
	‰ The handler for the drag message must be continu...
	‰ The continue statement fails if the application ...

	draw
	Command to redraw the window item.
	Parameters
	Examples
	Notes
	‰ When a handler makes visible changes to a window...
	‰ To draw all the window items, just tell the wind...
	‰ Icons and pictboxes will draw even if their visi...
	‰ You often can avoid the necessity of sending dra...

	drop
	Event message sent when dragged data is about to b...
	Parameters
	Examples
	Notes
	‰ The data parameter is a list whose values descri...
	‰ If you changed the format of the data parameter ...
	‰ Continue the drop message only if you wish to ac...
	‰ To be droppable a window item must be visible. A...

	get data
	Command to get some data from the window item.
	Parameters
	Examples
	Notes
	‰ The value returned by get data is identical to t...
	‰ Use the as parameter to coerce the default value...
	‰ The get data command is not normally used, since...

	mouse entered
	Event message sent when the mouse becomes position...
	Parameters
	Examples
	Notes
	‰ This message is paired with the mouse left messa...
	‰ The mouse entered message handler often is used ...

	mouse left
	Event message sent when the mouse becomes no longe...
	Parameters
	Examples
	Notes
	‰ This message is paired with the mouse entered me...
	‰ The mouse left message handler often is used to ...

	mouse within
	Event message sent repeatedly while the mouse rema...
	Parameters
	Examples
	Notes
	‰ The mouse within message handler often is used t...
	‰ Changes made to the appearances of other window ...
	‰ The mouse within message is sent as often as pos...

	set data
	Command to assign data to a window item.
	Parameters
	Examples
	Notes
	‰ The class of the value assigned by set data shou...
	‰ The set data command is not normally used, since...

	show balloon
	Command to show the help balloon for the item.
	Parameters
	Examples

	Forms and Filters
	Forms and Key Filters
	The appearance and behavior of every button, gauge...
	The default standard form used by each window item...
	A form for a textbox, and the corresponding proper...
	You can add form definition resources to a project...
	You assign a particular form to a window item by s...

	Formats
	Some forms are so simple that they need no additio...
	Every window item that has a form property also ha...
	By the way, menus can use forms, but they do not u...

	Form and Format Documentation
	In the Forms View of the Project Window, double-cl...
	When you are editing a window template, you can as...

	Key Filters
	The forms for textboxes and table cells are called...
	A key filter can determine the value class of data...
	Furthermore, using the format property of the text...

	Examples and Sources of Forms
	The “•Feature Highlights•” folder contains many pr...

	Some Technical Notes
	If you are a programmer, you probably recognize th...

	Boxes
	Boxes are rectangular graphic objects used in wind...
	The pen pattern, pen size, and pen color propertie...
	The corners of a box can be rounded by setting the...
	If the title property of a box is set to a non-emp...
	A box can be made into a scrolling pane by setting...
	Properties of Boxes
	Boxes have the properties shown here in addition t...
	corners
	The diameters of the ovals that define the corners...
	Value Class
	Examples
	Notes
	‰ The corners property is expressed as horizontal ...
	‰ If the corner diameters are set to large numbers...
	‰ The corners of a standard push button are {8, 8}...
	‰ The corners property defaults to {0, 0}—square c...

	fill pattern
	Pattern with which a box’s background is filled.
	Value Class
	Examples
	Notes
	‰ The Fill Pattern popup of the Properties popup i...
	‰ Color pattern (ppat) resources are imported into...
	‰ The default fill pattern is none.
	‰ If the fill pattern of a box is none and you set...

	justification
	Alignment of the title within the top line of the ...
	Value Class
	Examples
	Notes
	‰ The justification defaults to left (but there is...

	pen pattern
	Pattern with which a box’s outline will be drawn.
	Value Class
	Examples
	Notes
	‰ The Pen Pattern popup of the Properties popup in...
	‰ Color pattern (ppat) resources are imported into...
	‰ The raised and inset pen patterns produce 3-D ef...
	‰ By default, pen pattern is black.

	pen size
	Line thickness of the box’s border.
	Value Class
	Examples
	Notes
	‰ The Pen Size popup of the Properties popup in th...
	‰ The default pen size is {1, 1}.

	scroll
	Distance that the content of a scrollable box has ...
	Value Class
	Examples
	Notes
	‰ The scroll property is measured in pixels. It is...
	‰ Setting the scroll property causes the box to sc...
	‰ Setting the scroll property does not cause a scr...
	‰ A box whose scrollable property is true behaves ...

	scrollable
	Does the box have scroll bars?
	Value Class
	boolean
	Examples
	Notes
	‰ A box whose scrollable property is true behaves ...
	‰ When the scrollable property is set to true, the...
	‰ When the value of scrollable is false, the box h...
	‰ Scrollable defaults to false.

	title
	The text displayed in the top line of a box.
	Value Class
	string
	Examples
	Note
	‰ The default title of a box is the null string, w...

	Box Command and Event Messages
	This section describes the only event message that...
	Boxes can also receive and handle several messages...
	scrolled
	Event message sent when the box is scrolled with a...
	Parameters
	Example
	Notes
	‰ A box whose scrollable property is true behaves ...
	‰ Setting the scroll from a script does not cause ...
	‰ Two or more boxes can be made to scroll in paral...

	Scrolling Panes
	A scrolling pane is a box whose scrollable propert...
	A scrolling pane “encloses” all the window items w...
	Scrolling a scrolling pane actually changes the co...
	There is a scrolling pane example among the Featur...

	Checkboxes
	Checkboxes are used to present options to the appl...
	Properties of Checkboxes
	Checkboxes have the properties shown here in addit...
	form
	The name of a form definition resource.
	Value Class
	Examples
	Notes
	‰ The form of a checkbox usually is set in edit mo...
	‰ The default standard form for a checkbox (a reso...
	‰ Optional button forms can be imported into a pro...
	‰ A form might require the use of the format prope...
	‰ To see basic documentation for a form, select it...
	‰ For a detailed discussion of forms and formats, ...

	format
	A string of parameters for use by a form definitio...
	Value Class
	string
	Examples
	Notes
	‰ To see basic documentation for using the format ...
	‰ Some forms do not require the use of the format ...
	‰ For a detailed discussion of forms and formats, ...

	highlight
	Same as the hilite property of a checkbox.

	hilite
	Is the checkbox hilited—that is, does it display a...
	Value Class
	boolean
	Examples
	Notes
	‰ The hilite of a checkbox is set before the hilit...
	‰ Setting the hilite property of a checkbox does n...

	title
	The text displayed by the checkbox.
	Value Class
	string
	Examples
	Notes
	‰ If a script sets the title of a checkbox, it mig...
	‰ The title of a checkbox defaults to “Checkbox.”

	Checkbox Command and Event Messages
	This section describes the only event message that...
	Checkboxes can also receive and handle several mes...
	hilited
	Event message sent when the checkbox is clicked.
	Parameters
	Examples
	Notes
	‰ A checkbox receives a hilited message when it be...
	‰ Setting the hilite property of a checkbox does n...

	Gauges
	Gauges are objects such as scroll bars and progres...
	The form property determines the type of gauge obj...
	The step and leap properties determine the line an...
	The minimum and maximum properties determine the e...
	Properties of Gauges
	Gauges have the properties shown here in addition ...
	form
	The form of the gauge as defined by a form definit...
	Value Class
	Examples
	Notes
	‰ The default standard form for a gauge (a resourc...
	‰ Optional gauge forms can be imported into a proj...
	‰ A form might require the use of the format prope...
	‰ To see basic documentation for a form, select it...
	‰ For a detailed discussion of forms and formats, ...

	format
	A string of parameters for use by a form definitio...
	Value Class
	string
	Examples
	Notes
	‰ To see basic documentation for using the format ...
	‰ Some forms do not require the use of the format ...
	‰ For a detailed discussion of forms and formats, ...

	leap
	Amount by which the scroll changes when the gauge ...
	Value Class
	integer
	Examples
	Notes
	‰ A standard scrollbar gauge is scrolled by a “pag...
	‰ If you set the leap property, you should also se...
	‰ The default leap for the standard scrollbar gaug...

	maximum
	The maximum possible value of a gauge’s scroll (or...
	Value Class
	integer
	Examples
	Notes
	‰ If you set the maximum property, you should also...
	‰ The default maximum for the standard scrollbar g...

	minimum
	The minimum possible value of a gauge’s scroll pro...
	Value Class
	integer
	Examples
	Notes
	‰ If you set the minimum property, you should also...
	‰ The default minimum of the standard scrollbar ga...

	scroll
	The amount that the gauge has been scrolled; its s...
	Value Class
	integer
	Examples
	Notes
	‰ The scroll property is the current setting of th...
	‰ If a script sets the scroll, the gauge automatic...

	setting
	Same as the scroll property of a gauge.

	step
	Amount by which the gauge’s scroll (or setting) pr...
	Value Class
	integer
	Examples
	Notes
	‰ A standard scrollbar gauge is scrolled by a “lin...
	‰ The default step of the standard scrollbar gauge...
	‰ If you set the step property, you should also se...

	title
	The displayed text of the gauge.
	Value Class
	string
	Examples
	Note
	‰ A standard scrollbar gauge does not display its ...

	Gauge Command and Event Messages
	This section describes the only event message that...
	Gauges can also receive and handle several message...
	scrolled
	Event message sent when a gauge is scrolled intera...
	Parameters
	Example
	Note
	‰ The scrolled message is not sent to the gauge wh...

	Graphic Lines
	Graphic lines are graphic objects used in windows ...
	The pen pattern, pen color, and pen size propertie...
	Properties of Graphic Lines
	Graphic lines have the properties shown here in ad...
	pen pattern
	The pattern with which a graphic line is drawn.
	Value Class
	Examples
	Notes
	‰ The Pen Pattern popup of the Properties popup in...
	‰ Color pattern (ppat) resources are imported into...
	‰ By default, pen pattern is black.

	pen size
	The graphic line thickness in pixels.
	Value Class
	Examples
	Notes
	‰ The pen size of a graphic line needs only a heig...
	‰ The Pen Size popup of the Properties popup in th...
	‰ The default pen size is {0, 1}, for a horizontal...

	Graphic Line Command and Event Messages
	There are no command or event messages sent specif...

	Icons
	Icons are containers in which ICON (black and whit...
	The hilite rule property permits icons to be used ...
	The hilite style property permits icons to be hili...
	Icons can be scaled to any size.
	Properties of Icons
	Icons have the properties shown here in addition t...
	artwork
	The project artwork resource displayed by an icon....
	Value Class
	Examples
	Notes
	‰ Although the artwork property can be set under m...
	‰ If the artwork property is set to none, the icon...
	‰ For information about the resource info class, s...

	highlight
	The term highlight can be used interchangeably wit...

	hilite
	Is the icon highlighted?
	Value Class
	boolean
	Examples
	Notes
	‰ The hilite property of an icon is always false i...
	‰ The highlighting sequence of an icon, and the ef...
	‰ By default, hilite is false, since the default h...

	hilite artwork
	The artwork used when highlighting a button having...
	Value Class
	Example
	Notes
	‰ The hilite artwork applies only to icons with th...
	‰ Instead of changing the appearance of the normal...
	‰ Since the default hilite style is none, the defa...

	hilite rule
	The kind of button the icon imitates.
	Value Class
	Examples
	Notes
	 ‰ The hilite rule of an icon determines the kind ...
	‰ The highlighting sequence of an icon, and the us...
	‰ By default, hilite rule is none.

	hilite style
	The visual change in the icon when it is clicked.
	Value Class
	Examples
	Notes
	‰ You can make all the areas of a given color high...
	‰ If the selection rule or hilite style is set to ...
	‰ If the hilite rule is not none, but the hilite s...
	‰ By default, hilite style is none.

	Icon Command and Event Messages
	This section describes the only event message that...
	Icons can also receive and handle several messages...
	hilited
	Event message sent when an icon with a hilite rule...
	Parameters
	Examples
	Note
	‰ If the hilite rule is set to none, the icon does...

	Labels
	Labels are non-editable, one-line text objects use...
	The rectangular area bounding a label is transpare...
	Labels lack many of the properties of textboxes, b...
	Properties of Labels
	Labels have the properties shown here in addition ...
	justification
	Alignment of the title within the bounds of the la...
	Value Class
	Examples
	Notes
	‰ The justification property makes sense only if t...
	‰ The default justification is left.

	title
	Text that is displayed as the label.
	Value Class
	string
	Examples
	Note
	‰ The default title of a label is “Label.”

	Label Command and Event Messages
	There are no command and event messages sent speci...

	Listboxes
	A listbox displays non-editable text and/or artwor...
	When there is not enough space to display the enti...
	One or several items can be selected in various wa...
	The contents property of a listbox describes the i...
	The optional form property of a listbox can custom...
	Individual items of the contents of listboxes may ...
	Properties of Listboxes
	Listboxes have the properties shown here in additi...
	column count
	The number of columns of entries displayed in the ...
	Value Class
	integer
	Examples
	Notes
	‰ Listbox items (entries) are assigned as a single...
	‰ All listbox columns are of equal width.
	‰ If you resize a multiple-column list, its width ...
	‰ By default, column count is 1, and the contents ...

	doubleclick item
	The button that receives a hilited message when an...
	Value Class
	Examples
	Notes
	‰ The doubleclick item must be a push button.
	‰ The push button’s visible property must be true,...
	‰ If a listbox has a doubleclick item, double-clic...
	‰ By default, doubleclick item is none.

	form
	The form of the listbox as defined by a form defin...
	Value Class
	Examples
	Notes
	‰ The default standard form for listboxes is built...
	‰ Optional listbox forms (resources of type LDEF) ...
	‰ A form might require the use of the format prope...
	‰ Many listbox forms require that listbox items th...
	‰ To see basic documentation for a form, select it...
	‰ For a detailed discussion of forms and formats, ...

	format
	A string of parameters for use by a form definitio...
	Value Class
	string
	Examples
	Notes
	‰ To see basic documentation for using the format ...
	‰ Some forms do not require the use of the format ...
	‰ For a detailed discussion of forms and formats, ...

	key scrollable
	Can the listbox be scrolled from the keyboard?
	Value Class
	boolean
	Examples
	‰ If the key scrollable property of a listbox is t...
	‰ You can scroll the list with the arrow keys.
	‰ If the list is in alphabetical order, you can sc...
	‰ To suspend the normal time limit for scrolling b...
	‰ When the listbox has the focus, it has a bold ou...
	‰ The default value of key scrollable is false.

	margin
	The space between the border of a scrollable listb...
	Value Class
	integer
	Examples
	Notes
	‰ A scrollable listbox acquires a bold selection o...
	‰ The default margin is 3.
	‰ The bold selection outline can be suppressed by ...

	row count
	Number of rows of entries contained in the listbox...
	Value Class
	integer
	Examples
	Notes
	‰ The value of row count is automatically updated ...
	‰ The number of rows is not the same as the number...
	‰ If you set the row count property of a listbox t...

	scroll
	The number of rows that the content of a listbox h...
	Value Class
	integer
	Examples
	Notes
	‰ When the value of scrollable is false, the listb...
	‰ The scroll is 0 when the listbox is displaying t...

	scrollable
	Does the listbox have a scrollbar?
	Value Class
	boolean
	Examples
	Notes
	‰ When the value of scrollable is false, the listb...
	‰ When the scrollable property is set to true, the...
	‰ Scrollable is true by default.

	selection
	The indices of the listbox entries that are select...
	Value Class
	Examples
	Notes
	‰ If no listbox items are selected, the selection ...
	‰ To select a certain item with a script, set the ...
	‰ If the listbox is not full, the selection can be...
	‰ To get or replace the text of a selection within...
	‰ If you replace the contents of the selection, yo...
	‰ You can set the selection to one or more items w...

	selection rule
	The number of listbox items that can be selected, ...
	Value Class
	Examples
	Note
	‰ The default value of selection rule is allow any...

	Listbox Command and Event Messages
	This section describes command and event messages ...
	Listboxes can also receive and handle several mess...
	clear
	Edit menu command: Clears the contents of the sele...
	Parameters
	Examples

	copy
	Edit menu command: Copies the contents of the sele...
	Parameters
	Examples

	focus received
	Event message sent when a listbox gets the focus.
	Parameters
	Example
	Notes
	‰ A listbox receives the focus when the applicatio...
	‰ The focus received message is sent only to listb...

	keystroke
	Event message sent when a key is pressed while the...
	Parameters
	Notes
	‰ The keystroke message is received by a listbox o...
	‰ The keystroke message may also be sent by a scri...
	‰ For more information and an example of a keystro...

	scrolled
	Event message sent when a listbox is scrolled.
	Parameters
	Example
	Notes
	‰ A listbox can be scrolled with its scrollbar (it...
	‰ The scroll property tells how far down, in rows,...

	selection made
	Event message sent when the user selects a listbox...
	Parameters
	Example
	Notes
	‰ The selection property tells which listbox items...
	‰ If the listbox is not full, the selection can be...

	Listbox items
	Individual items of the contents of listboxes may ...
	Properties of Listbox Items
	Listbox items have a very limited collection of pr...
	contents
	The text of a listbox item.
	Value Class
	string
	Examples
	Notes
	‰ The contents is the text of the entry only if th...
	‰ The contents property of a listbox item is the s...

	index
	The index of the listbox item within its listbox.
	Value Class
	integer
	Examples
	Note
	‰ Listbox items are indexed sequentially from top ...

	name
	Same as the contents property of a listbox item.

	Movies
	Movies are containers in which QuickTime™ movie fi...
	FaceSpan displays movies with or without a standar...
	The editable property determines whether a movie i...
	Properties of Movies
	Movies have the properties shown here in addition ...
	artwork
	The QuickTime movie file displayed by a movie.
	Value Class
	Examples
	Notes
	‰ Movie artwork is not copied into the project, so...
	‰ If the application is distributed without movies...

	editable
	Are the frames of the movie selectable and editabl...
	Value Class
	boolean
	Examples
	Notes
	‰ If editable is true, the movie can receive the f...
	‰ A movie with the focus has a bold outline around...
	‰ Editable is false by default.

	elapsed time
	The position to which a movie has been advanced.
	Value Class
	integer
	Examples
	Notes
	‰ The elapsed time property is expressed in units ...
	‰ The total time contributed by each movie frame i...
	‰ The elapsed time property is the same as the scr...

	locked
	The inverse of the editable property.

	margin
	The space between the border of an editable movie ...
	Value Class
	integer
	Examples
	Notes
	‰ An editable movie acquires a bold selection outl...
	‰ The bold selection outline can be suppressed by ...
	‰ The default margin is 3.

	repeating
	Will the movie automatically replay when it gets t...
	Value Class
	boolean
	Examples
	Note
	‰ By default, repeating is false.

	scroll
	The scroll property is the same as the elapsed tim...

	scrollable
	Does the movie have a standard QuickTime controlle...
	Value Class
	boolean
	Examples
	Notes
	‰ The standard QuickTime controller lets the appli...
	‰ When the value of scrollable is false, the contr...
	‰ The default value of scrollable is true.

	selection
	The portion of a movie that is selected.
	Value Class
	Examples
	Note
	‰ The two values in the selection represent starti...

	speed
	Rate at which a movie is played.
	Value Class
	integer
	Examples
	Notes
	‰ The speed is expressed as a percentage of the mo...
	‰ The speed property is read-only, but it is set i...
	‰ Speed defaults to 100 (“”) of the normal speed)....

	time scale
	The standard playing rate of a movie.
	Value Class
	integer
	Examples
	Notes
	‰ The standard time scale is 600 (meaning 600 unit...
	‰ Both the selection property and the elapsed time...
	‰ Time scale is a read-only property.

	volume
	Loudness level at which a movie will be played.
	Value Class
	integer
	Examples
	Notes
	‰ The volume is expressed as a percentage of the m...
	‰ The default volume is 100 (% of the normal volum...

	Movie Command and Event Messages
	This section describes command and event messages ...
	Movies can also receive and handle several message...
	clear
	Edit menu command: Deletes the current selection o...
	Parameters
	Examples
	Note
	‰ If the movie is the window item that currently h...

	copy
	Edit menu command: Copies the current selection of...
	Parameters
	Examples
	Note
	‰ If the movie is the window item that currently h...

	cut
	Edit menu command: Copies the current selection of...
	Parameters
	Examples
	Note
	‰ If the movie is the window item that currently h...

	focus received
	Event message sent when a movie gets the focus.
	Parameters
	Example
	Notes
	‰ A movie receives the focus when the application ...
	‰ The focus received message is sent only to movie...

	paste
	Edit menu command: Pastes the current contents of ...
	Parameters
	Examples
	Notes
	‰ If the movie is the window item that currently h...
	‰ If there is no movie in the Clipboard, nothing i...

	pause
	Command to pause the movie.
	Parameters
	Examples

	play
	Command to start or resume a movie.
	Parameters
	Examples
	Notes
	‰ To restart a movie from the beginning, set its s...
	‰ The speed is expressed as a percentage of the mo...
	‰ Including the speed parameter in the play comman...

	Pictboxes
	Pictboxes are containers in which pictures (PICTs)...
	A pictbox can simulate a button or an array of but...
	A pictbox that simulates a button gets a hilited m...
	Pictboxes can be horizontally and vertically scrol...
	Pictboxes cannot be simultaneously scrollable and ...
	Properties of Pictboxes
	Pictboxes have the properties shown here in additi...
	artwork
	The picture resource or file displayed by the pict...
	Value Class
	Examples
	Notes
	‰ If the actual picture is smaller than the bounds...
	‰ You can set artwork by specifying only the name ...
	‰ If you set the artwork to an alias to a PICT fil...
	‰ If the artwork property is set to none, the pict...
	‰ For information about the resource info class, s...

	highlight
	Same as the hilite property of a pictbox.

	hilite
	Is the pictbox hilited (has it been clicked)?
	Value Class
	boolean
	Examples
	Note
	‰ The hilite property is meaningful only for ungri...

	hilite rule
	Same as the selection rule property of a pictbox.

	hilite style
	Same as the selection style property of a pictbox....

	justification
	Determines how the pictbox is aligned.
	Value Class
	Example

	scale
	Controls the magnification or reduction of the ima...
	Value Class
	integer
	Example
	Notes
	‰ The scale is expressed as a magnification of the...
	‰ The constant standard, or value of 0, provides a...

	scroll
	The distances that the content of a scrollable pic...
	Value Class
	Examples
	Notes
	‰ When the value of the scrollable property is fal...
	‰ Setting the scroll property does not send the pi...

	scrollable
	Can the pictbox be scrolled (does it have scroll b...
	Value Class
	boolean
	Examples
	Notes
	‰ When the value of scrollable is false, the value...
	‰ When the scrollable property is set to true (usu...
	‰ Scrollable is false by default.

	selection
	A list of the indices of selected cells in a gridd...
	Value Class
	Examples
	Notes
	‰ Pictbox cells are indexed sequentially, in readi...
	‰ The selection is the empty list when no cells ar...
	‰ The selection is the empty list when the pictbox...
	‰ If the selection rule is as push button or as ra...
	‰ If the selection rule is as checkbox, then the s...

	selection grid
	The numbers of rows and columns that divide the pi...
	Value Class
	Examples
	Notes
	‰ The default value of the selection grid property...
	‰ A pictbox whose selection grid property is {1, 1...
	‰ Several pictboxes, each acting as a single radio...
	‰ A pictbox whose selection grid property is great...
	‰ If selection rule set to none, the pictbox will ...
	‰ If selection style is set to none, the pictbox w...
	‰ The Selection Grid popup of the Properties menu ...

	selection rule
	Determines which button is imitated by an ungridde...
	Value Class
	Examples
	Notes
	‰ If selection rule is set to none, the pictbox wi...
	‰ By default, selection rule is none.
	‰ Several pictboxes, each acting as a single radio...

	selection style
	Determines the visual transformation that a pictbo...
	Value Class
	Examples
	Notes
	‰ You can specify that areas of a given color are ...
	‰ If selection style is set to none, the pictbox w...
	‰ By default, selection style is none.

	Pictbox Command and Event Messages
	This section describes command and event messages ...
	hilited
	Event message sent when an ungridded pictbox with ...
	Parameters
	Examples
	Notes
	‰ If an ungridded pictbox’s selection rule is set ...
	‰ The hilited message is for ungridded pictboxes o...
	‰ The hilited and selection made messages are mutu...

	selection made
	Event message sent when a gridded pictbox is click...
	Parameters
	Examples
	Notes
	‰ If a pictbox’s selection grid is {1, 1}, or if i...
	‰ The selection made message is for gridded pictbo...
	‰ The hilited and selection made messages are mutu...
	‰ If the selection rule is as push button or as ra...
	‰ If the selection rule is as checkbox, then the s...

	Popups (Pop-up Menus)
	A popup expands, when clicked, to display a menu o...
	The form property of popups permits a variety of d...
	Individual items of the contents of a popup can be...
	Properties of Popups
	Popups have the properties shown here in addition ...
	form
	The form of the popup as defined by a form definit...
	Value Class
	Examples
	Notes
	‰ The default form for a popup (a resource of type...
	‰ Optional popup forms can be imported into a proj...
	‰ A form might require the use of the format prope...
	‰ Many popup forms require that menu items themsel...
	‰ To see basic documentation for a form, select it...
	‰ For a detailed discussion of forms and formats, ...

	format
	A string of parameters for use by a form definitio...
	Value Class
	string
	Examples
	Notes
	‰ To see basic documentation for using the format ...
	‰ Some forms do not require the use of the format ...
	‰ Formats for popups are limited to at most 255 ch...
	‰ For a detailed discussion of forms and formats, ...

	popup item or menu item properties
	Properties of the class menu item also apply to it...
	selection
	Index of the item that is selected in the popup.
	Value Class
	Examples
	Notes
	‰ The standard form for popups allows only one men...
	‰ The selection property is a list of one item. Yo...
	‰ The contents of the selection is a string, not a...
	‰ To get or set the contents of a specific menu it...

	title item
	The window item that will be highlighted when the ...
	Value Class
	Examples
	Notes
	‰ The title item is hilited by inverting its color...
	‰ If the title item of a popup is set to the popup...
	‰ The title item is none by default.

	Popup Command and Event Messages
	This section describes the only event message that...
	Popups can also receive and handle several message...
	selection made
	Event message sent when a menu item in the popup i...
	Parameters
	Example
	Notes
	‰ The standard form for popups allows only one men...
	‰ The selection property is a list of one item.
	‰ You can set the selection with a list containing...

	Push Buttons
	Push buttons permit users to start and end process...
	FaceSpan automates the highlighting that occurs wh...
	‰ The auto close property permits a push button to...
	‰ The command key property permits a push button t...
	‰ The default item property draws a double outline...
	‰ The cancel item property permits a push button t...
	Properties of Push Buttons
	Push buttons have the properties shown here in add...
	auto close
	Does clicking the button close its window?
	Value Class
	boolean
	Examples
	Notes
	‰ The auto close property usually is set in edit m...
	‰ When a button whose auto close property is true ...
	‰ The auto close property may be true for any numb...
	‰ Auto close is, by default, false.

	cancel item
	Does the button act like a standard Cancel button?...
	Value Class
	boolean
	Examples
	Notes
	‰ The button is automatically “clicked” when the a...
	‰ The cancel item property usually is set in edit ...
	‰ The cancel item property can be true of only one...

	command key
	Defines the optional Command-key equivalent that a...
	Value Class
	Examples
	Notes
	‰ The command key property usually is set in edit ...
	‰ Do not set the command key to a character that i...
	‰ The default value of command key is the null str...

	default item
	Does the button look and act like a standard OK bu...
	Value Class
	boolean
	Examples
	Notes
	‰ The button is automatically “clicked” when the a...
	‰ The default item property usually is set in edit...
	‰ The default item property can be true of only on...
	‰ The default item has a bold outline around it.
	‰ The default value of default item is false.

	form
	The name of a form definition resource in the proj...
	Value Class
	Examples
	Notes
	‰ The form property usually is set in edit mode.
	‰ The default standard form for a push button (a r...
	‰ Optional button forms can be imported into a pro...
	‰ A form might require the use of the format prope...
	‰ To see basic documentation for a form, select it...
	‰ For a detailed discussion of forms and formats, ...

	format
	A string of parameters for use by a form definitio...
	Value Class
	string
	Examples
	Notes
	‰ To see basic documentation for using the format ...
	‰ Some forms do not require the use of the format ...
	‰ For a detailed discussion of forms and formats, ...

	hilite
	Is the push button hilited?
	Value Class
	boolean
	Notes
	‰ The hilite property of a push button is always f...
	‰ The push button actually highlights when it is c...

	title
	The text displayed by the push button.
	Value Class
	string
	Examples
	Note
	‰ If a script sets the title of a push button, it ...

	Push Button Command and Event Messages
	This section describes the only event messages tha...
	Push buttons can also receive and handle several m...
	hilited
	Event message sent when the push button is clicked...
	Parameters
	Examples
	Notes
	‰ A push button receives the hilited message only ...
	‰ Since the push button’s hilite property changes ...
	‰ A push button can receive a hilited message in r...
	‰ A push button can be designated as the doublecli...

	Radio Buttons
	Radio buttons are displayed in groups of two or mo...
	When a radio button becomes hilited, FaceSpan auto...
	FaceSpan considers any group of radio buttons havi...
	Properties of Radio Buttons
	Radio buttons have the properties shown here in ad...
	form
	The name of a form definition resource.
	Value Class
	Examples
	Notes
	‰ The form of a radio button usually is set in edi...
	‰ The default standard form for a radio button (a ...
	‰ Optional button forms can be imported into a pro...
	‰ A form might require the use of the format prope...
	‰ To see basic documentation for a form, select it...
	‰ For a detailed discussion of forms and formats, ...

	format
	A string of parameters for use by a form definitio...
	Value Class
	string
	Examples
	Notes
	‰ To see basic documentation for using the format ...
	‰ Some forms do not require the use of the format ...
	‰ For a detailed discussion of forms and formats, ...

	highlight
	Same as the hilite property of a radio button.

	hilite
	Does the radio button appear highlighted?
	Value Class
	boolean
	Examples
	Notes
	‰ The effect of clicking a radio button is to set ...
	‰ A radio button does not receive a hilited messag...
	‰ A radio button’s hilite is set before the hilite...
	‰ The hilite of a radio button can be set from a s...

	title
	Text displayed by the radio button.
	Value Class
	string
	Examples
	Note
	‰ If a script sets the title of a radio button, it...

	Radio Button Command and Event Messages
	This section describes the only event message that...
	Radio buttons can also receive and handle several ...
	hilited
	Event message sent when the radio button becomes h...
	Parameters
	Examples
	Notes
	‰ A radio button receives a hilited message only w...
	‰ A radio button’s hilite is set before the hilite...

	Tables
	Table Objects are two-dimensional lists of textbox...
	When a table cell is editable, the cut, copy, past...
	You can make a table scrollable or not, in either ...
	You can have a table drawn with or without lines b...
	The rows and columns can be resizable or not.
	A table can be arbitrarily selectable, not selecta...
	Each cell of a table can have a key filter and a c...
	Finally, every cell and title can have its own fon...
	Reference Forms
	Like menu items and listbox items, the elements of...
	‰ table 3
	‰ rows of table 3
	‰ columns of table 3
	‰ cells of table 3

	Properties of Tables
	Tables have the properties shown here in addition ...
	Most cell and title properties (all the properties...
	The editable property can similarly be assigned to...
	The rest of the properties listed here apply a tab...
	changing
	Is a cell being edited?
	Value Class
	boolean
	Examples
	Notes
	‰ If the changing property is true, then the chang...
	‰ The default value of changing is false.

	column count
	The number of columns in the table.
	Value Class
	integer
	Examples
	Notes
	‰ The maximum column count of a table is 32,767.
	‰ A newly-created table has a column count of 3.

	column lines
	Should a line separate each column?
	Value Class
	boolean
	Examples
	Notes
	‰ The lines separating rows and columns are dotted...
	‰ By default, column lines is true.

	column titles
	The titles of all the columns in the table.
	Value Class
	Examples
	Notes
	‰ The usual value of column titles is simply a con...
	‰ The default value of column titles, standard, me...
	‰ To hide the column titles, set column titles to ...
	‰ If the table’s column titles are not displayed, ...
	‰ If you alter any column title, the column titles...
	‰ You can retrieve the actual title strings by coe...
	‰ If the column titles value is none, asking for t...

	column widths
	The widths of all the columns in the table.
	Value Class
	list of integer
	Examples
	Notes
	‰ Column widths includes the width of column zero,...
	‰ Get or set the width of a single column by way o...
	‰ The column width is 64 pixels by default. (The r...

	contents
	The text or other values of the cells of the table...
	Value Class
	Examples
	Notes
	‰ The contents of the table or of a selection of t...
	‰ The contents of the table or of a selection of t...
	‰ The contents of a cell can be set to a value of ...
	‰ To get or set the contents of only the selected ...
	‰ You can also get and set the contents of individ...
	‰ When a cell has a key filter assigned to it, the...
	‰ If you assign to a table more column or row valu...
	‰ If you assign to a row, column or contents of th...
	‰ If you assign to a table fewer column or row val...
	‰ If you assign to a row, column or contents of th...

	doubleclick item
	The push button to be clicked when a cell is doubl...
	Value Class
	Examples
	Notes
	‰ The doubleclick item must be a push button whose...
	‰ If the table is editable, double-clicking in a c...
	‰ By default, doubleclick item is none.

	editable
	May the table’s cells be edited?
	Value Class
	boolean
	Examples
	Notes
	‰ Editable is really a property of cells. Setting ...
	‰ When editable is true, the cursor is an I-beam o...
	‰ When editable is true, the text within cells can...
	‰ When editable is false, then the cell-selection ...
	‰ The editable property of a new table is false.

	key scrollable
	Does the table respond to keystrokes?
	Value Class
	boolean
	Examples
	Notes
	‰ If key scrollable is true, the arrow keys can be...
	‰ If key scrollable is true but text (rather than ...
	‰ The key scrollable property of a new table is tr...

	resizable columns
	May the application user resize the columns?
	Value Class
	boolean
	Examples
	Notes
	‰ You can get and set the column widths property t...
	‰ Resizable columns defaults to true.

	resizable rows
	May the application user resize the rows?
	Value Class
	boolean
	Examples
	Notes
	‰ You can get and set the row widths property to s...
	‰ Resizable rows defaults to false.

	row count
	The number of rows in the table.
	Value Class
	integer
	Examples
	Notes
	‰ The maximum row count is 32,767.
	‰ The default row count is 6.

	row heights
	The heights of all the rows in the table.
	Value Class
	list of integer
	Examples
	Notes
	‰ Row heights includes the height of the column ti...
	‰ Get or set the height of a single row by way of ...
	‰ The default heights of all rows are 17 pixels.

	row lines
	Should a line separate each row?
	Value Class
	boolean
	Examples
	Notes
	‰ The lines separating the rows are dotted lines d...
	‰ By default, the row lines property is true.

	row titles
	The titles of all the rows in the table.
	Value Class
	Examples
	Notes
	‰ The usual value of row titles is simply a consta...
	‰ The default value of row titles, standard, means...
	‰ To hide the row titles, set row titles to none.
	‰ If the table’s row titles are not displayed, the...
	‰ If you alter any row title, the row titles prope...
	‰ You can retrieve the actual title strings by coe...
	‰ If the row titles value is none, asking for the ...

	scroll
	The row and column positions of the contents of th...
	Value Class
	Examples
	Notes
	‰ The scroll of a table can be defined as the row ...
	‰ The scroll of an unscrolled table is {1,1}.

	scrollable across
	Does the table have a horizontal scrollbar?
	Value Class
	boolean
	Examples
	Notes
	‰ When scrollable across is set to true, the heigh...
	‰ Scrollable across is true by default.

	scrollable down
	Does the table have a vertical scrollbar?
	Value Class
	boolean
	Examples
	Notes
	‰ When scrollable down is set to true, the width o...
	‰ Scrollable across defaults to true.

	selection
	The selection of the table.
	Value Class
	Examples
	Notes
	‰ The selection property defines a rectangle bound...
	‰ To get or set the actual values that are selecte...
	‰ If no cells are selected, the selection is {0, 0...
	‰ You can deselect all cells by setting the select...

	selection rule
	The manner in which cells can be selected.
	Value Class
	Examples
	Notes
	‰ The selection rules allow rows, allow columns, a...
	‰ The selection rule defaults to allow group.

	Table Command and Event Messages
	This section describes command and event messages ...
	Note that the elements of a table—cells, rows and ...
	Tables can also receive and handle several message...
	changed
	Event sent after a cell has been edited, and is ab...
	Parameters
	Examples
	Notes
	‰ A cell of a table loses the focus when the inter...
	‰ If any cell has a key filter assigned to it, the...
	‰ You can prevent the focus from moving away from ...

	focus received
	Event sent after the window’s focus is set to refe...
	Parameters
	Examples
	Notes
	‰ A table can receive the focus only when its edit...
	‰ It receives the focus when the application user ...
	‰ A script can set the focus of the window to a ta...

	scrolled
	Event sent after the table is scrolled by the appl...
	Parameters
	Examples
	Notes
	‰ A table can be scrolled with the scroll bars, or...
	‰ A table cannot be scrolled by dragging if it has...
	‰ Setting the scroll property from a script does n...

	selection made
	Event sent after one or more cells of the table ha...
	Parameters
	Examples
	Notes
	‰ The selection made message is sent only when the...
	‰ The selection made message is not sent when a sc...

	Rows of Tables
	Rows, like columns, are not window items; they are...
	Reference Forms
	You can refer to a row by its index or name, or as...
	‰ row 1 of table 4
	‰ row “Totals” of table “tblSales”
	‰ cells of row 3

	Properties of Rows
	Almost all the properties affecting the appearance...
	You can get or set many cell properties as if they...
	sets the editable property of every cell in the ro...
	This statement acknowledges that the editable prop...
	The foregoing statements apply to every cell prope...
	Rows do have five properties of their own: index, ...
	contents
	The values of the cells of the row.
	Value Class
	Examples
	Notes
	‰ Contents is a cell property, not a row or column...
	‰ In the case of the contents property, a list of ...
	‰ The default value class of the contents of a tab...
	‰ If all cells accept strings, a single string, wi...
	‰ When a cell has a key filter assigned to it, the...

	height
	The height in pixels of the row (and all its cells...
	Value Class
	list of integer
	Examples
	Note
	‰ The default height of a row is 17 pixels.

	index
	The index of the row within the table.
	Value Class
	integer
	Examples
	Notes
	‰ The index of the top row of cells is 1.
	‰ The index is a read-only property.

	name
	The name of the row.
	Value Class
	string
	Examples
	Notes
	‰ The name property is shorthand for contents of t...

	title
	The title of the row.
	Value Class
	Examples
	Notes
	‰ The title property acts as if it is an object wi...
	‰ The term title of row is shorthand for contents ...
	‰ Setting the width of any row title sets the widt...
	‰ The last example shows the use of title in a col...
	‰ If you assign a new contents to a row title, it ...
	‰ If you assign a new contents to a row title, the...

	visible
	Is the row (its title and cells) visible?
	Value Class
	boolean
	Examples
	Note
	‰ When the visible of a row is false, the table cl...

	Columns
	Columns, like rows, are not window items; they are...
	Reference Forms
	You can refer to a column by its index or name, or...
	‰ column 7 of table “Mesa”
	‰ column “Expenses” of table “Taxes”
	‰ cells of column 3

	Properties of Columns
	Almost all the properties affecting the appearance...
	You can get or set many cell properties as if they...
	sets the editable property of every cell in the co...
	This statement acknowledges that the editable prop...
	The foregoing statements apply to every cell prope...
	Columns do have five properties of their own: inde...
	contents
	The values of the cells of the column.
	Value Class
	Examples
	Notes
	‰ Contents is a cell property, not a row or column...
	‰ In the case of the contents property, a list of ...
	‰ The default value class of the contents of a tab...
	‰ If all cells accept strings, a single string, wi...
	‰ When a cell has a key filter assigned to it, the...

	index
	The index of the column.
	Value Class
	integer
	Examples
	Notes
	‰ The index of the left column of cells is 1.
	‰ The index is a read-only property.

	name
	The name of the column.
	Value Class
	string
	Examples
	Note
	‰ The name property is shorthand for contents of t...

	title
	The title of the column.
	Value Class
	Examples
	Notes
	‰ The title property acts as if it is an object wi...
	‰ The term title of column is shorthand for conten...
	‰ Setting the height of any column title sets the ...
	‰ The last example shows the use of title in a col...
	‰ If you assign a new contents to a column title, ...
	‰ If you assign a new contents to a column title, ...

	visible
	Is the column (its title and cells) visible?
	Value Class
	boolean
	Examples
	Note
	‰ When the visible of a column is false, the table...

	width
	The width in pixels of the column (and all its cel...
	Value Class
	list of integer
	Examples
	Note
	‰ The default width of a column is 64.

	Cells
	Cells, like rows and columns, are not window items...
	Reference Forms
	You can refer to a cell by its index or name, or b...
	‰ cell {3, 6} of table “Mesa”
	‰ cell 3 of row 6 of table “Mesa”
	‰ cell 6 of column 3 of table “Taxes”
	‰ cell “C6” of table “Mesa” --if standard titles

	Properties of Cells
	Almost all the properties affecting the appearance...
	You can get or set cell properties as if they were...
	Conversely, you can get and set three column and r...
	sets the width of the cell’s column (column 2) to ...
	Almost all cell properties must be set using scrip...
	contents
	The value of the cell.
	Value Class
	Examples
	Notes
	‰ The default value class of the contents of a cel...
	‰ When a cell has a key filter assigned to it, the...

	editable
	May this cell be edited?
	Value Class
	boolean
	Examples
	Notes
	‰ The editable property of a single cell or of all...
	‰ By default the editable of every cell in a table...

	fill color
	The fill color of the cell.
	Value Class
	Examples
	Notes
	‰ The fill color property of a single cell or of a...
	‰ By default the fill color of every cell in a tab...

	font
	The font of the cell’s contents.
	Value Class
	string
	Examples
	Notes
	‰ The font property of a single cell or of all cel...
	‰ By default the font of every cell in a table is ...

	format
	Parameters for use by a key filter (form) definiti...
	Value Class
	string
	Examples
	Notes
	‰ To see basic documentation for using the format ...
	‰ Some key filters do not require the use of the f...
	‰ By default the format property is the empty stri...

	index
	The index of the cell itself.
	Value Class
	Examples
	Notes
	‰ In the example, the cell resides in row “Totals”...
	‰ A cell’s index is persistent, while its name can...
	‰ Index is a read-only property.

	justification
	The justification of the cell’s contents.
	Value Class
	Examples
	Notes
	‰ The justification property of a single cell or o...
	‰ By default the justification of every cell in a ...

	key filter
	A form that controls the entry of characters into ...
	Value Class
	Examples
	Notes
	‰ The key filter property normally is set in edit ...
	‰ A key filter might require the use of the format...
	‰ The key filter, if any, determines the value of ...
	‰ You can find out how to use a key filter by “ope...
	‰ When a cell has a key filter assigned to it, the...
	‰ Key filters are not built into FaceSpan, but can...

	name
	The cell’s column and row titles, concatenated.
	Value Class
	string
	Examples
	Notes
	‰ The name can be used to refer to the cell.
	‰ If the row titles or column titles of the table ...
	‰ The name property is read-only.

	pen color
	The pen color of the cell.
	Value Class
	Examples
	Notes
	‰ The pen color property of a single cell or of al...
	‰ By default the pen color of every cell in a tabl...

	size
	The text size—in points—of the cell’s contents.
	Value Class
	integer
	Examples
	Notes
	‰ The size property of a single cell or of all cel...
	‰ By default the size of every cell in a table is ...

	style
	The text style of the cell’s contents.
	Value Class
	text style info
	Examples
	Notes
	‰ The style property of a single cell or of all ce...
	‰ By default the style of every cell in a table is...

	uniform styles
	The text styles that are uniform.
	Value Class
	text style info
	Examples
	Notes
	‰ The uniform styles property of a single cell or ...
	‰ By default the uniform styles of every cell in a...

	valid
	Is the text in the cell correct according to the k...
	Value Class
	Examples
	Notes
	‰ Asking for the value of the valid property cause...
	‰ If the valid property is false, asking for it as...
	‰ The valid property is read-only.

	Textboxes
	Textboxes are containers for variable amounts of t...
	The text styles of any portion of the text in a te...
	Text in textboxes can be manipulated using the sta...
	Key filters can be applied to editable textboxes t...
	Properties of Textboxes

	Textboxes have the properties shown here in additi...
	changing
	Has the textbox been changed?
	Value Class
	boolean
	Examples
	Notes
	‰ The value of the changing property is set to tru...
	‰ If the changing property of a textbox is true, i...
	‰ If a handler changes the changing property of a ...
	‰ Use the return invalid command to prevent the us...

	contents
	The text or key-filtered value of the textbox.
	Value Class
	Examples
	Notes
	‰ When a textbox has a key filter assigned to it, ...
	‰ See the key filter property description.
	‰ If the contents is set to the alias of a text fi...

	editable
	Can the text be selected and edited by the user?
	Value Class
	boolean
	Examples
	Notes
	‰ The standard editing commands—cut, copy, paste a...
	‰ When the Command key is down, the editable prope...
	‰ You can create “hot text”—words and phrases that...
	‰ The locked property is the inverse of the editab...

	form
	See the description of the key filter property.

	format
	A string of parameters for use by a key filter (fo...
	Value Class
	string
	Examples
	Notes
	‰ To see basic documentation for using the format ...
	‰ Some key filters do not require the use of the f...
	‰ For a detailed discussion of key filters, forms ...

	justification
	Alignment of the text within the bounds of the tex...
	Value Class
	Examples

	key filter
	A form that controls the entry of characters into ...
	Value Class
	Examples
	Notes
	‰ Key filters normally are set in edit mode, durin...
	‰ A key filter might require the use of the format...
	‰ The key filter, if any, determines the value of ...
	‰ You can find out how to use a key filter by “ope...
	‰ When a textbox has a key filter assigned to it, ...
	‰ For a detailed discussion of key filters, forms ...

	line height
	Line spacing in pixels between the baselines of te...
	Value Class
	Examples
	Notes
	‰ If the text contains fonts of various sizes, the...
	‰ When line height is set to an integer, the calcu...
	‰ If not set, the value of the line height propert...

	locked
	The locked property is the inverse of the editable...

	margin
	Margin between the border of the textbox and its t...
	Value Class
	integer
	Examples
	Notes
	‰ The margin is measured in pixels. It applies to ...
	‰ If not set, the value of margin defaults to 3.
	‰ Setting the margin of a textbox to 0 makes its b...
	‰ When the editable property of a textbox is set t...
	‰ The margin of a textbox is not the same entity a...

	mixed styles
	Can the textbox contain text with mixed styles?
	Value Class
	boolean
	Examples
	Notes
	‰ The mixed styles property normally is set in edi...
	‰ If the mixed styles property is set to false whi...

	scroll
	Distance that the content of a scrollable textbox ...
	Value Class
	integer
	Examples
	Notes
	‰ The scroll property is measured in pixels.
	‰ Setting the scroll property causes the textbox t...
	‰ Setting the scroll property does not cause a scr...
	‰ When the value of scrollable is false, the scrol...

	scrollable
	Does the textbox have a scrollbar?
	Value Class
	boolean
	Examples
	Notes
	‰ When the scrollable property is set to true, the...
	‰ When the value of scrollable is false, the textb...
	‰ A textbox has a scroll value regardless of the v...
	‰ Textboxes whose wrapped property is true will ac...
	‰ Non-wrapped textboxes do not accept return chara...

	selection
	Portion of the contents of a textbox that is selec...
	Value Class
	Examples
	Notes
	‰ Setting the selection causes the indicated text ...
	‰ Setting the selection to a range larger than the...
	‰ If the first and second items of the selection a...
	‰ The selected text within a textbox, and its size...
	‰ The style, size, font, pen color and contents of...

	selection rule
	Makes every word of a non-editable textbox into “h...
	Value Class
	Examples
	Notes
	‰ The selection rule property, although not normal...
	‰ If the selection rule property is as push button...
	‰ When this technique is applied to an editable te...

	valid
	Is the text in the textbox correct according to th...
	Value Class
	Examples
	Notes
	‰ If the valid property is false, asking for it as...
	‰ The valid property is read-only.

	wrapped
	Is the text in the textbox automatically wrapped?
	Value Class
	boolean
	Examples
	Notes
	‰ Wrapping means that when a line of text will not...
	‰ Textboxes whose wrapped property is true will ac...
	‰ Non-wrapped textboxes do not accept return chara...

	Textbox Command and Event Messages
	This section describes command and event messages ...
	Textboxes can also receive and handle several mess...
	changed
	Event message sent when a newly-edited textbox los...
	Parameters
	Example
	Notes
	‰ A textbox loses the focus—and is sent a changed ...
	‰ Textboxes in modal dialogs do not receive the ch...
	‰ The example script shows how the application use...
	‰ See the changing property of textboxes for more ...

	clear
	Edit menu command: Deletes the contents of the sel...
	Parameters
	Examples
	Notes
	‰ Without a direct parameter, the clear command cl...
	‰ With a direct parameter that is a reference to a...
	‰ See the selection property of textboxes for more...

	copy
	Edit menu command: Copies the contents of the sele...
	Parameters
	Examples
	Notes
	‰ Without a direct parameter, the copy command cop...
	‰ With a direct parameter that is a reference to a...
	‰ See the selection property of textboxes for more...

	cut
	Edit menu command: Copies to the Clipboard the con...
	Parameters
	Examples
	Notes
	‰ Without a direct parameter, the cut command cuts...
	‰ With a direct parameter that is a reference to a...
	‰ See the selection property of textboxes for more...

	focus received
	Event message sent when a textbox gains the focus....
	Parameters
	Example
	Notes
	‰ A textbox receives the focus when the applicatio...
	‰ The focus received message is sent only to textb...

	hilited
	Event message sent when any group-styled text in a...
	Parameters
	Example
	Notes
	‰ In a non-editable textbox, text with the group s...
	‰ In a non-editable textbox, any word of a textbox...
	‰ At the moment the textbox gets the hilited messa...
	‰ You can use this “hot text” feature of locked te...
	‰ Holding down the Command key temporarily locks t...
	‰ Words and phrases can be set to the group style ...

	keystroke
	Event message sent to a textbox with the focus whe...
	Parameters
	Examples
	Notes
	‰ The key parameter is a composite value containin...
	‰ To extract the key code, divide the key paramete...
	‰ A script can send the keystroke message as a com...
	‰ If the keystroke handler is not continued, then ...
	‰ The standard String Commands scripting addition ...
	‰ Ticks indicates 60ths of a second since the last...

	paste
	Edit menu command: Pastes the contents of the Clip...
	Parameters
	Examples
	Notes
	‰ Without a direct parameter, the paste command pa...
	‰ With a direct parameter that is a reference to a...
	‰ See the selection property of textboxes for more...

	scrolled
	Event message sent when the textbox is scrolled in...
	Parameters
	Example
	Notes
	‰ A textbox gets a scrolled message when it is scr...
	‰ Setting the scroll from a script does not cause ...
	‰ Two or more textboxes can be made to scroll in p...

	Text Suite
	The Text Suite is a standard set of objects and pr...
	As defined by the Text Suite, the contents of a te...
	FaceSpan implements all the important objects and ...
	Reference Forms
	Here are examples of the various ways that you can...
	‰ characters of textbox 3
	‰ character 2 of textbox 3
	‰ words of textbox 3
	‰ word 7 of textbox 3
	‰ lines of textbox 3
	‰ line 5 of textbox 3
	‰ paragraphs of textbox 3
	‰ paragraph 2 of textbox 3
	‰ character 2 of word 7 of paragraph 2 of textbox ...
	In addition, you can refer to sequences of charact...
	If you refer to words this way, note that the word...
	Often you will want the text that falls within a r...
	When you obtain a range of text this way, it inclu...

	Characters
	A character is a single letter, digit or other sym...
	Properties of Characters
	It is characters that display in a textbox, and so...
	color
	Color of the character.
	Value Class
	Examples
	Notes
	‰ The color property is always returned as an RGB ...
	‰ The integer values for indexing color are treate...
	‰ By default, color is black.

	font
	The name of the font.
	Value Class
	string
	Examples
	Note
	‰ The default font of a textbox depends upon the w...

	size
	The size of the font in pixels.
	Value Class
	fixed
	Examples
	Note
	‰ The default size of a textbox depends upon the w...

	style
	The text style.
	Value Class
	text style info
	Examples
	Notes
	‰ For more information about the text style info c...
	‰ The default style of a textbox depends upon the ...

	uniform styles
	The text styles that are uniform throughout the te...
	Value Class
	text style info
	Examples
	Notes
	‰ Although a single character does have a uniform ...
	‰ For more information about the text style info c...

	Lines, Paragraphs, Words
	Lines contain words and characters. All the proper...
	Properties of Lines
	Lines have one additional property—justification.
	justification
	Justification of the text.
	Value Class
	Examples
	Note
	‰ Justification is a read-only property.

	Paragraphs
	Paragraphs contain words and characters. All the p...

	Words
	Words contain characters. All the properties of ch...

	Chapter�13: Chapter�13: Window Items
	Chapter�14: Chapter�14: Menus and Menu Items

	Menus and Menu Items
	Like window items, menus and menu items are interf...
	See the discussion of the chosen message in Chapte...
	Menus
	Menus constructed with FaceSpan’s Menu Editor and ...

	Properties of Menus
	The properties of menus and menu items normally ar...
	contents
	A list of the names of the menu items contained by...
	Value Class
	Examples
	Note
	‰ You can use a return-delimited string, instead o...

	enabled
	Is the menu active or inactive?
	Value Class
	boolean
	Examples
	Notes
	‰ An active menu is normal in appearance and respo...
	‰ If you need to disable all the items in a menu, ...
	‰ By default, enabled is true.

	form
	The form of the menu as defined by a form definiti...
	Value Class
	Examples
	Notes
	‰ The default standard form for a menu (a resource...
	‰ Menu forms can be assigned only at runtime; the ...
	‰ Optional menu forms can be imported into a proje...
	‰ Menus neither have nor use the format property.
	‰ Many menu forms require that menu items themselv...
	‰ To see basic documentation for a form, select it...
	‰ For a discussion of forms, see Chapter 13: “Wind...

	index
	The index number of the menu within the menu bar.
	Value Class
	integer
	Examples
	Notes
	‰ Menus are indexed sequentially from left to righ...
	‰ The index of a menu is a read-only property.

	name
	The displayed name of the menu.
	Value Class
	string
	Examples
	Notes
	‰ The name of a menu is a read-only property.
	‰ The name property is the same as the title prope...

	title
	The title property is the same as the name propert...

	Menu Items
	Menu items are the individually-choosable items co...
	Properties of Menu Items
	The properties of menus and menu items normally ar...
	checked
	Does a mark character appear alongside the menu it...
	Value Class
	boolean
	Examples
	Notes
	‰ The character used to mark a menu item is define...
	‰ If you set the mark of a menu item to a value ot...
	‰ By default, checked is false.

	command key
	Command-key equivalent that activates a menu item....
	Value Class
	Examples
	Notes
	‰ The command key property does not apply to popup...
	‰ If you set command key to a null string (“”), th...
	‰ Do not set command key to a space.
	‰ If you use the same Command-key equivalent for m...
	‰ If you use the same Command-key equivalent for i...
	‰ Command keys for menu items also can conflict wi...
	‰ The command key is the null string by default.

	contents
	The contents property is the same as the name prop...

	enabled
	Is the menu item enabled (active)?
	Value Class
	boolean
	Examples
	Notes
	‰ When a menu item is enabled, it is normal in app...
	‰ Enabled is true by default.

	index
	The index number of a menu item within its menu.
	Value Class
	integer
	Examples
	Notes
	‰ Menu items are indexed sequentially from top to ...
	‰ The index of a menu item is a read-only property...

	mark
	The character (if any) that marks a checked menu i...
	Value Class
	Examples:
	Notes
	‰ If you set the mark of a menu item to a value ot...
	‰ If checked is true and the mark is not specified...

	name
	The name or text of the menu item.
	Value Class
	string
	Examples
	Note
	‰ The name property is the same as the contents pr...

	style
	The text style of the first character of the name ...
	Value Class
	text style info
	Examples
	Notes
	‰ The style of a menu item is expressed as lists o...

	uniform styles
	The text styles that are uniform to the contents o...
	Value Class
	text style info
	Examples
	Note
	‰ The uniform styles property of a menu item is ex...

	Menu Command and Event Messages
	There is only one event and message associated wit...
	chosen
	When the application user chooses a command from a...
	The direct parameter of a chosen message is a refe...
	The chosen message can be sent as a command, but t...
	Menus and menu items do not have their own scripts...

	Chapter�15: Chapter�15: Special Artwork and Chapte...

	Resource Info
	The resource info object class is used to specify ...
	See the discussions of the artwork property of ico...
	Properties of Resource Info
	The resource info object is implemented as a recor...
	The meanings of these four properties, or fields, ...
	class
	The defining class of a resource info record.
	Value Class
	resource info
	Note
	‰ It is not always necessary to include the class ...

	id
	Unique identification number of a resource.
	Value Class
	integer
	Examples
	Note
	‰ The id must be unique only among resources of th...

	name
	Name of an artwork resource.
	Value Class
	string
	Examples
	Note
	‰ The name must be unique only among resources of ...

	type
	The resource type of an artwork resource.
	Value Class
	Examples
	Note
	‰ See also the examples in the discussions of name...

	Text Style Info
	The text style info object class lets you specify ...
	See the descriptions of the style and uniform styl...
	Properties of Text Style Info
	off styles
	The text styles that are off in the style or unifo...
	Value Class
	Examples

	on styles
	The text styles that are on in the style or unifor...
	Value Class
	Examples
	Note
	‰ For menu items only, the last style in the list ...

	Chapter�16: Chapter�16: Storage Items

	Storage
	A storage item is a piece of data kept in permanen...
	Storage items can be created using the storage ite...
	Reference Forms
	There are only two reference forms for storage ite...

	Properties of Storage items
	contents
	The information kept in the storage item.
	Value Class
	anything
	Examples
	Notes
	‰ You can get and set the contents of a storage it...
	‰ Storage item values persist until changed by a s...
	‰ Some contents property values cannot be used dir...
	‰ The use of a storage item that contains a script...

	id
	The unique id of the storage item.
	Value Class
	integer
	Examples
	Notes
	‰ The id is a read-only property.
	‰ The id values start at 5001.

	name
	The name of the storage item.
	Value Class
	string
	Examples
	Notes
	‰ The name property values are limited to strings ...
	‰ The name property can be changed from a script, ...
	‰ Storage items can be created, named and set to a...

	Special Considerations
	Because they are both permanent and global, storag...
	One of the more interesting uses of a storage item...

	Appendix A: FaceSpan Menu Reference
	Apple menu
	When FaceSpan is the active application, choose th...

	File menu
	While a Project Window is active, all of the File ...
	New Project

	When you choose New Project, FaceSpan creates a ne...
	If you have created a customized “Default Project,...
	Open Project

	Choose Open Project to display a dialog box from w...
	Close Project

	Choose Close Project to close the active project. ...
	While a Window Editor, Menu Editor, or Script Edit...
	Revert Project

	Choose Revert Project, to revert an active project...
	While a Window Editor, Menu Editor, or Script Edit...
	Save Project

	Choose Save Project to save the active project und...
	Save Project As

	Choose Save Project As to display the Save Project...
	Save As Run Only

	Choose Save As Run Only to display the Save As Run...
	Page Setup

	Choose Page Setup to display the standard Macintos...
	Print Project

	Choose Print Project to print a report about the w...
	While a Window Editor, Menu Editor, or Script Edit...
	Quit

	Choose Quit to close any currently open projects a...

	Edit menu
	While a Project Window is active, Edit menu comman...
	While a Window Editor, Menu Editor, or Script Edit...

	Window menu
	Use the Window menu to display or hide FaceSpan wi...
	Tools

	Use the Tools command to hide or display the Windo...
	Dictionary

	You can use FaceSpan’s Dictionary Windoid to inspe...
	Detailed instructions about how to use the Diction...
	Message

	Use the Message command to hide or display the Mes...
	Window List

	The name of each open project and its open window ...
	Next Window

	Use the Next Window command to bring the window te...

	Script menu
	The Script menu is enabled whenever a Script Edito...
	Check Syntax

	When you choose Check Syntax from the Script menu,...
	Recording

	FaceSpan’s script recorder begins when you choose ...
	Enter Selection

	To automatically enter the highlighted text into t...
	Find

	Use the Find command to locate a particular word o...
	First, choose the Find command from the Script men...
	Find Again

	To search the active Script Editor for the next oc...
	Find in Next

	Choose Find in Next to search for the next occurre...
	Replace

	To replace a particular word or phrase occurring i...
	First, choose Replace from the Script menu to disp...
	Replace Again

	Choose Replace Again from the Script menu to searc...
	AppleScript Formatting

	Choose the AppleScript Formatting command from the...

	Object menu
	The Object menu commands provide additional contro...
	Object Info

	To display an Object Information dialog, select a ...
	Object Script

	To display the Script Editor for the selected obje...
	Snap to Grid

	Snap to Grid causes a window item to align with th...
	Snap to Size

	When Snap to Size is turned on (check marked in th...
	Lock Position

	When Lock Position is turned on (check marked in t...
	Unlock Position

	When Unlock Position is turned on (check marked in...
	Alignment

	To display a hierarchical menu of commands you can...
	Align Lefts

	Aligns the left edges of all selected window items...
	Align Centers

	Aligns the centers of selected window items along ...
	Align Rights

	Aligns the right edges of selected window items wi...
	Distribute Across

	Distributes the centers of selected window items e...
	Align Tops

	Aligns the top edges of selected window items with...
	Align Centers

	Aligns the centers of selected window items along ...
	Align Bottoms

	Aligns the bottom edges of selected window items w...
	Distribute Down

	Distributes the centers of selected window items e...
	Bring to Front

	Brings the selected window items to the front laye...
	Bring Forward

	Brings each selected window item forward by one la...
	Send Backward

	Sends each selected window item backward by one la...
	Send to Back

	Sends the selected window items to the back layers...
	Select

	You can use the Select command to automatically se...

	Font menu
	Choose the Font menu to display a list of fonts in...

	Style menu
	Styles
	Select a text style for any selected character(s) ...
	Sizes

	Select a point size for any selected character(s) ...
	Pen Color

	You can use this popup to set the pen color proper...
	Fill Color

	You can use this popup to set the fill color prope...

	Appendix B: Commands and Shortcuts
	Keyboard commands
	The Project Window, Window Editor (window template...
	Project Window commands
	Window Template keyboard commands
	Property Bar keyboard commands
	Tool Palette keyboard commands
	Script Editor keyboard commands

	Keyboard equivalents for menu commands
	Window menu keyboard shortcuts
	Object menu keyboard shortcuts
	Script menu keyboard shortcuts

	Mouse Shortcuts
	Opening the Script Editor
	Hold the Command Key while double-clicking a windo...
	Selecting a line of code in the Script Editor

	Triple-click the line of code.
	Selecting enclosed text in the Script Editor

	Double-click one of these characters to select all...
	Selecting multiple items in a template window

	Hold the Command key while dragging over window it...
	Opening the Object Information dialog

	Double-click a window item
	Opening an expanded Object Information dialog

	Hold the Option Key while double-clicking a window...
	Displaying Artwork Information dialogs

	Double-click the artwork while the Artwork Chooser...
	Keeping the same Object Maker tool

	Hold the Command Key while the tool is selected, t...
	Duplicating a window item

	Hold the Option Key while click-dragging the objec...
	Aligning window items

	Selected window items can be aligned by using comb...

	Appendix C: Sizes and Limits
	This appendix tells about the maximum sizes and co...
	Sizes and counts:
	‰ Fewer than 330 window items are allowed in an op...
	‰ Up to 9 projects can be open at once.
	‰ Textboxes and listboxes can hold up to 32K (32,7...
	‰ Scripts can contain up to 32K of text each.
	‰ The Message Windoid’s log area can contain up to...
	‰ Each cell of a table can contain 32K of text.
	‰ The effective length of a listbox item is 100 ch...
	 ‰ Each item stored in the storage items area can ...

	Larger than effective sizes:
	‰ Labels and checkbox, radio button, push button, ...
	‰ Balloon text can contain up to 32K of characters...
	‰ Window, menu, menu item, artwork, form, and stor...
	Note
	‰ Drag & drop works by default under System 7.5, a...

	Appendix D: Scripting Resources
	To use FaceSpan effectively, you will want to deve...
	Books About AppleScript
	‰ AppleScript Applications: Building Applications ...
	AppleScript Applications: Building Applications wi...
	‰AppleScript Finder Guide. Cupertino: Apple Comput...
	AppleScript Finder Guide (ISBN 0-201-409-10-0) des...
	‰ AppleScript for Dummies (ISBN# 1-56884-975-3). I...
	‰ AppleScript Language Guide English Dialect. Cupe...
	AppleScript Language Guide English Dialect (ISBN 0...
	‰ AppleScript Scripting Additions Guide English Di...
	AppleScript Scripting Additions Guide (ISBN 0-201-...
	‰ Goodman, Danny. Danny Goodman’s AppleScript Hand...
	This second edition of AppleScript Handbook (ISBN ...
	‰ Michel, Steve. Scripting the Scriptable Finder. ...
	This book presents a in-depth discussion about how...
	‰ Schneider, Derrick, with Hans Hansen and Tim Hol...
	The Tao of AppleScript (ISBN 1-56830-075-1) from t...
	‰ Trinko, Tom. Applied Mac Scripting. New York: He...
	Applied Mac Scripting (ISBN 1-55828-330-7) teaches...

	Other Helpful References
	‰ Electronic Guide to Macintosh Human Interface De...
	This CD-ROM disc contains full electronic text of ...
	‰ Inside Macintosh: Interapplication Communication...
	Inside Macintosh: Interapplication Communication (...
	‰ Macintosh Human Interface Guidelines. Cupertino:...
	Macintosh Human Interface Guidelines (ISBN 0-201-6...
	‰ Tognazzini, Bruce. TOG on Interface. Reading: Ad...
	TOG on Interface (ISBN 0-201-60842-1) is for “all ...
	Sources

	‰ Addison-Wesley Publishing Company, Inc. Reading,...
	‰ APDA Apple Computers, Inc. P.O. Box 319 Buffalo,...
	‰ Apple Computer, Inc. 20525 Mariani Avenue Cupert...
	‰ Berkeley Macintosh User Group (BMUG) 1442A Walnu...
	‰ Heizer Publishing P.O. Box 232019 Pleasant Hill,...
	‰ Henry Holt and Company 115 West 18th Street New ...

	Other Scripting Tools
	The AppleScript Development Kit from APDA and Appl...
	The Script Editor is an application you can use to...
	Script Debugger, a product of Late Night Software ...

	AppleScript Support on-line
	AppleLink
	Developer Support: AppleScript Talk
	(Note: The “Interface Builder” folder is for discu...
	Internet

	MacScripting Digest Mailing List
	To subscribe, send a mail message to: LISTSERV@dar...
	include the following in the body of the message: ...
	AOL

	Computing: Utilities/Desk Accessories: AppleScript...
	eWorld

	Computer Center:Software Center from Ziffnet/Mac:S...
	Computer Center:Straight to the Source:Ground Zero...
	Computer Center:Forums:Macintosh Development Forum...
	Compuserve

	MACDEV/Scripting Month
	MACDEV/Tools/Debuggers
	MACDEV/Other Languages
	MACSYS/Utilities
	DTPFORUM/Mac DTP Utilities
	APPHYPER/XCMDs & XFCNs
	APPHYPER/Xpert Alley
	DTPFORUM/Program Demos
	INETRESOURCE/Mac Internet S/W
	MACAP/Databases
	MACDEV/C and Pascal
	MACAP/Misc. Applications

	Appendix E: Reserved Words List
	There are many words that are used for objects, cl...
	There are also words reserved for use in AppleScri...
	FaceSpan’s reserved words are:

	Appendix F: How to Write Forms
	A folder called “How to Write Forms” in included o...

	Appendix G: Speed Enhancement Tips
	To speed up the opening of projects, try the follo...
	‰ Within the info dialog of Editable or Lockable t...
	‰ If you have many windows that will be accessed b...
	To speed up the running of a FaceSpan project appl...
	‰ Unless needed, avoid placing scripts behind ever...
	‰ Try opening your application in ResEdit and sett...
	Appendix
	Index

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

